Optimizing Secure Quantum Information Transmission in Entanglement-Assisted Quantum Networks
- URL: http://arxiv.org/abs/2501.09895v3
- Date: Sat, 15 Feb 2025 01:20:12 GMT
- Title: Optimizing Secure Quantum Information Transmission in Entanglement-Assisted Quantum Networks
- Authors: Tasmin Karim, Md. Shazzad Hossain Shaon, Md. Fahim Sultan, Mst Shapna Akter,
- Abstract summary: This work addresses issues by integrating Quantum Key Distribution (QKD) with Multi-Layer Chaotic Encryption.
The framework offers a future-proof approach for defining secure communication protocols in crucial sectors such as medical treatment, forensic computing, and national security.
- Score: 0.0
- License:
- Abstract: Quantum security improves cryptographic protocols by applying quantum mechanics principles, assuring resistance to both quantum and conventional computer attacks. This work addresses these issues by integrating Quantum Key Distribution (QKD) utilizing the E91 method with Multi-Layer Chaotic Encryption, which employs a variety of patterns to detect eavesdropping, resulting in a highly secure image-transmission architecture. The method leverages entropy calculations to determine the unpredictability and integrity of encrypted and decrypted pictures, guaranteeing strong security. Extensive statistical scenarios illustrate the framework's effectiveness in image encryption while preserving high entropy and sensitivity to the original visuals. The findings indicate significant improvement in encryption and decryption performance, demonstrating the framework's potential as a robust response to weaknesses introduced by advances in quantum computing. Several metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Normalized Cross-Correlation (NCC), Bit Error Rate (BER), entropy values for original, encrypted, and decrypted images, and the correlation between original and decrypted images, validate the framework's effectiveness. The combination of QKD with Multi-Layer Chaotic Encryption provides a scalable and resilient technique to secure image communication. As quantum computing advances, this framework offers a future-proof approach for defining secure communication protocols in crucial sectors such as medical treatment, forensic computing, and national security, where information confidentiality is valuable.
Related papers
- Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era [0.0]
Post-quantum cryptography (PQC) is a critical field aimed at developing resilient cryptographic algorithms to quantum attacks.
This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates impervious principles of quantum computing, and introduces various PQC algorithms.
arXiv Detail & Related papers (2024-03-18T12:51:56Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Enhancing the security of image transmission in Quantum era: A
Chaos-Assisted QKD Approach using entanglement [0.0]
Quantum computing has introduced unprecedented security challenges to conventional cryptographic systems.
This research addresses these challenges by innovatively combining quantum key distribution (QKD) with logistic chaotic maps to establish a secure image transmission scheme.
arXiv Detail & Related papers (2023-11-30T11:26:38Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - NEQRX: Efficient Quantum Image Encryption with Reduced Circuit Complexity [2.7985570786346745]
We propose an efficient implementation scheme for a quantum image encryption algorithm combining the generalized affine transform and logistic map.
We achieve a remarkable 50% reduction in cost while maintaining security and efficiency.
arXiv Detail & Related papers (2022-04-14T10:15:23Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.