論文の概要: HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
- arxiv url: http://arxiv.org/abs/2501.09934v1
- Date: Fri, 17 Jan 2025 03:15:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:36.674349
- Title: HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
- Title(参考訳): HEART: 自動車エッジクラウド統合階層型学習のためのタイムリーなマルチモデルトレーニングを実現する
- Authors: Xiaohong Yang, Minghui Liwang, Xianbin Wang, Zhipeng Cheng, Seyyedali Hosseinalipour, Huaiyu Dai, Zhenzhen Jiao,
- Abstract要約: AI対応のIoT of Vehicles(IoV)の急速な成長は、効率的な機械学習(ML)ソリューションを求めている。
車両はしばしば複数のMLタスクを同時に実行する必要がある。
本稿では,グローバルトレーニング遅延の最小化を目的とした動的VEC-HFLにおけるマルチモデルトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 30.75025062952915
- License:
- Abstract: The rapid growth of AI-enabled Internet of Vehicles (IoV) calls for efficient machine learning (ML) solutions that can handle high vehicular mobility and decentralized data. This has motivated the emergence of Hierarchical Federated Learning over vehicle-edge-cloud architectures (VEC-HFL). Nevertheless, one aspect which is underexplored in the literature on VEC-HFL is that vehicles often need to execute multiple ML tasks simultaneously, where this multi-model training environment introduces crucial challenges. First, improper aggregation rules can lead to model obsolescence and prolonged training times. Second, vehicular mobility may result in inefficient data utilization by preventing the vehicles from returning their models to the network edge. Third, achieving a balanced resource allocation across diverse tasks becomes of paramount importance as it majorly affects the effectiveness of collaborative training. We take one of the first steps towards addressing these challenges via proposing a framework for multi-model training in dynamic VEC-HFL with the goal of minimizing global training latency while ensuring balanced training across various tasks-a problem that turns out to be NP-hard. To facilitate timely model training, we introduce a hybrid synchronous-asynchronous aggregation rule. Building on this, we present a novel method called Hybrid Evolutionary And gReedy allocaTion (HEART). The framework operates in two stages: first, it achieves balanced task scheduling through a hybrid heuristic approach that combines improved Particle Swarm Optimization (PSO) and Genetic Algorithms (GA); second, it employs a low-complexity greedy algorithm to determine the training priority of assigned tasks on vehicles. Experiments on real-world datasets demonstrate the superiority of HEART over existing methods.
- Abstract(参考訳): AI対応のIoT(Internet of Vehicles, IoV)の急速な成長は、車載モビリティと分散データを扱う効率的な機械学習(ML)ソリューションを求めている。
これにより、車両エッジクラウドアーキテクチャ(VEC-HFL)よりも階層的フェデレーションラーニング(Hierarchical Federated Learning)が出現した。
しかしながら、VEC-HFLの文献で過小評価されている1つの側面は、車両が複数のMLタスクを同時に実行する必要があることであり、このマルチモデルトレーニング環境は重要な課題をもたらす。
第一に、不適切なアグリゲーションルールは、モデル偏光と長期のトレーニング時間をもたらす可能性がある。
第2に、車両がネットワークエッジにモデルを返すのを防ぐことにより、車両の移動性が非効率なデータ利用をもたらす可能性がある。
第3に、多様なタスクにまたがるバランスの取れたリソース割り当てを実現することが、協調トレーニングの有効性に大きな影響を与えるため、最重要となる。
VEC-HFLにおけるマルチモデルトレーニングのフレームワークを提案することで,これらの課題に対処するための最初のステップの1つを,グローバルトレーニングのレイテンシを最小化しつつ,さまざまなタスク間のバランスの取れたトレーニングを確保することを目的としています。
タイムリーなモデル学習を容易にするため,ハイブリッド同期非同期アグリゲーションルールを導入する。
これに基づいて,Hybrid Evolutionary And gReedy allocaTion (HEART) という新しい手法を提案する。
まず、改良されたParticle Swarm Optimization (PSO) と遺伝的アルゴリズム (GA) を組み合わせたハイブリッドヒューリスティックアプローチにより、バランスの取れたタスクスケジューリングを実現する。
実世界のデータセットの実験は、既存の手法よりもHEARTの方が優れていることを示している。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Efficient Training of Large Vision Models via Advanced Automated Progressive Learning [96.71646528053651]
我々は、LVM(Large Vision Models)の効率的なトレーニングのための高度な自動プログレッシブラーニング(AutoProg)フレームワークを提案する。
我々はAutoProg-Zeroを導入し、新しいゼロショットフリーズスケジュールサーチによりAutoProgフレームワークを拡張した。
実験の結果、AutoProgはImageNetでViTの事前トレーニングを最大1.85倍加速し、拡散モデルの微調整を最大2.86倍加速する。
論文 参考訳(メタデータ) (2024-09-06T16:24:24Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
車両エッジインテリジェンス(VEI)は、将来のインテリジェントトランスポートシステムを実現するための有望なパラダイムである。
フェデレートラーニング(Federated Learning, FL)は、コラボレーティブモデルトレーニングとアグリゲーションを促進する基礎技術のひとつである。
ASFV(Adaptive Split Federated Learning scheme for Vehicular Edge Computing) を開発した。
論文 参考訳(メタデータ) (2024-05-29T02:34:38Z) - Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment [0.0]
ハーモナイズドトランスファーラーニングとモダリティアライメント(HarMA)は,タスク制約,モダリティアライメント,単一モダリティアライメントを同時に満足する手法である。
HarMAはリモートセンシング分野における2つの一般的なマルチモーダル検索タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-04-28T17:20:08Z) - A Reinforcement Learning Approach for Dynamic Rebalancing in
Bike-Sharing System [11.237099288412558]
自転車シェアリングシステムはエコフレンドリーな都市移動を提供し、交通渋滞と健康的な生活様式の緩和に貢献している。
駅間で自転車を再分配するための車両を用いた効果的な再バランス戦略の開発は、オペレーターにとって非常に重要である。
本稿では,複数の車両との動的再バランス問題に対する時間的強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-05T23:46:42Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Model-aided Federated Reinforcement Learning for Multi-UAV Trajectory
Planning in IoT Networks [17.770665737751372]
本稿では,データ収集ミッションにおいて,環境に関する限られた知識しか持たない複数のUAVを協調するモデル支援フェデレーションMARLアルゴリズムを提案する。
標準的なMARLアルゴリズムとの比較により,提案したモデル支援型FedQMIXアルゴリズムは実世界のトレーニング経験を約3倍削減することを示した。
論文 参考訳(メタデータ) (2023-06-03T07:16:17Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。