Surface-SOS: Self-Supervised Object Segmentation via Neural Surface Representation
- URL: http://arxiv.org/abs/2501.09947v1
- Date: Fri, 17 Jan 2025 04:14:09 GMT
- Title: Surface-SOS: Self-Supervised Object Segmentation via Neural Surface Representation
- Authors: Xiaoyun Zheng, Liwei Liao, Jianbo Jiao, Feng Gao, Ronggang Wang,
- Abstract summary: Self-supervised Object Function (SOS) aims to segment objects without any annotations.
Under conditions of multi-camera inputs, the structural, textural and geometrical consistency among each view can be leveraged to achieve fine-grained object segmentation.
We propose Surface representation based Self-supervised Blended Object (Surface-SOS) to segment objects for each view by 3D surface representation.
- Score: 29.297581094153166
- License:
- Abstract: Self-supervised Object Segmentation (SOS) aims to segment objects without any annotations. Under conditions of multi-camera inputs, the structural, textural and geometrical consistency among each view can be leveraged to achieve fine-grained object segmentation. To make better use of the above information, we propose Surface representation based Self-supervised Object Segmentation (Surface-SOS), a new framework to segment objects for each view by 3D surface representation from multi-view images of a scene. To model high-quality geometry surfaces for complex scenes, we design a novel scene representation scheme, which decomposes the scene into two complementary neural representation modules respectively with a Signed Distance Function (SDF). Moreover, Surface-SOS is able to refine single-view segmentation with multi-view unlabeled images, by introducing coarse segmentation masks as additional input. To the best of our knowledge, Surface-SOS is the first self-supervised approach that leverages neural surface representation to break the dependence on large amounts of annotated data and strong constraints. These constraints typically involve observing target objects against a static background or relying on temporal supervision in videos. Extensive experiments on standard benchmarks including LLFF, CO3D, BlendedMVS, TUM and several real-world scenes show that Surface-SOS always yields finer object masks than its NeRF-based counterparts and surpasses supervised single-view baselines remarkably. Code is available at: https://github.com/zhengxyun/Surface-SOS.
Related papers
- ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models [10.858627659431928]
Service robots must effectively recognize and segment unknown objects to enhance their functionality.
Traditional supervised learningbased segmentation techniques require extensive annotated datasets.
This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT)
arXiv Detail & Related papers (2025-02-05T15:22:20Z) - High-Fidelity Mask-free Neural Surface Reconstruction for Virtual Reality [6.987660269386849]
Hi-NeuS is a novel rendering-based framework for neural implicit surface reconstruction.
Our approach has been validated through NeuS and its variant Neuralangelo.
arXiv Detail & Related papers (2024-09-20T02:07:49Z) - Rethinking Amodal Video Segmentation from Learning Supervised Signals
with Object-centric Representation [47.39455910191075]
Video amodal segmentation is a challenging task in computer vision.
Recent studies have achieved promising performance by using motion flow to integrate information across frames under a self-supervised setting.
This paper presents a rethinking to previous works. We particularly leverage the supervised signals with object-centric representation.
arXiv Detail & Related papers (2023-09-23T04:12:02Z) - Unsupervised Multi-View Object Segmentation Using Radiance Field
Propagation [55.9577535403381]
We present a novel approach to segmenting objects in 3D during reconstruction given only unlabeled multi-view images of a scene.
The core of our method is a novel propagation strategy for individual objects' radiance fields with a bidirectional photometric loss.
To the best of our knowledge, RFP is the first unsupervised approach for tackling 3D scene object segmentation for neural radiance field (NeRF)
arXiv Detail & Related papers (2022-10-02T11:14:23Z) - NeRF-SOS: Any-View Self-supervised Object Segmentation from Complex
Real-World Scenes [80.59831861186227]
This paper carries out the exploration of self-supervised learning for object segmentation using NeRF for complex real-world scenes.
Our framework, called NeRF with Self-supervised Object NeRF-SOS, encourages NeRF models to distill compact geometry-aware segmentation clusters.
It consistently surpasses other 2D-based self-supervised baselines and predicts finer semantics masks than existing supervised counterparts.
arXiv Detail & Related papers (2022-09-19T06:03:17Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z) - Neural Volumetric Object Selection [126.04480613166194]
We introduce an approach for selecting objects in neural volumetric 3D representations, such as multi-plane images (MPI) and neural radiance fields (NeRF)
Our approach takes a set of foreground and background 2D user scribbles in one view and automatically estimates a 3D segmentation of the desired object, which can be rendered into novel views.
arXiv Detail & Related papers (2022-05-30T08:55:20Z) - Learning Object-Centric Representations of Multi-Object Scenes from
Multiple Views [9.556376932449187]
Multi-View and Multi-Object Network (MulMON) is a method for learning accurate, object-centric representations of multi-object scenes by leveraging multiple views.
We show that MulMON better-resolves spatial ambiguities than single-view methods.
arXiv Detail & Related papers (2021-11-13T13:54:28Z) - Locate then Segment: A Strong Pipeline for Referring Image Segmentation [73.19139431806853]
Referring image segmentation aims to segment the objects referred by a natural language expression.
Previous methods usually focus on designing an implicit and recurrent interaction mechanism to fuse the visual-linguistic features to directly generate the final segmentation mask.
We present a "Then-Then-Segment" scheme to tackle these problems.
Our framework is simple but surprisingly effective.
arXiv Detail & Related papers (2021-03-30T12:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.