ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models
- URL: http://arxiv.org/abs/2502.03266v1
- Date: Wed, 05 Feb 2025 15:22:20 GMT
- Title: ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models
- Authors: Ying Zhang, Maoliang Yin, Wenfu Bi, Haibao Yan, Shaohan Bian, Cui-Hua Zhang, Changchun Hua,
- Abstract summary: Service robots must effectively recognize and segment unknown objects to enhance their functionality.
Traditional supervised learningbased segmentation techniques require extensive annotated datasets.
This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT)
- Score: 10.858627659431928
- License:
- Abstract: Service robots operating in unstructured environments must effectively recognize and segment unknown objects to enhance their functionality. Traditional supervised learningbased segmentation techniques require extensive annotated datasets, which are impractical for the diversity of objects encountered in real-world scenarios. Unseen Object Instance Segmentation (UOIS) methods aim to address this by training models on synthetic data to generalize to novel objects, but they often suffer from the simulation-to-reality gap. This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT). The proposed framework operates in three stages: (1) generating object-agnostic mask proposals from colorized depth images using SAM, (2) refining these proposals using attention-based features from the selfsupervised ViT to filter non-object masks, and (3) applying K-Medoids clustering to generate point prompts that guide SAM towards precise object segmentation. Experimental validation on two benchmark datasets and a self-collected dataset demonstrates the superior performance of ZISVFM in complex environments, including hierarchical settings such as cabinets, drawers, and handheld objects. Our source code is available at https://github.com/Yinmlmaoliang/zisvfm.
Related papers
- ObjectRelator: Enabling Cross-View Object Relation Understanding in Ego-Centric and Exo-Centric Videos [105.40690994956667]
Ego-Exo Object Correspondence task aims to map objects across ego-centric and exo-centric views.
We introduce ObjectRelator, a novel method designed to tackle this task.
arXiv Detail & Related papers (2024-11-28T12:01:03Z) - Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts [14.631774737903015]
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios.
We present textiti.e., open-ended object detection, which discovers unseen objects without any object categories as inputs.
We show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks.
arXiv Detail & Related papers (2024-10-08T12:15:08Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - SAM-Assisted Remote Sensing Imagery Semantic Segmentation with Object
and Boundary Constraints [9.238103649037951]
We present a framework aimed at leveraging the raw output of SAM by exploiting two novel concepts called SAM-Generated Object (SGO) and SAM-Generated Boundary (SGB)
Taking into account the content characteristics of SGO, we introduce the concept of object consistency to leverage segmented regions lacking semantic information.
The boundary loss capitalizes on the distinctive features of SGB by directing the model's attention to the boundary information of the object.
arXiv Detail & Related papers (2023-12-05T03:33:47Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo
Labeling and Multi-scale Feature Grouping [40.07070188661184]
Weakly-Supervised Concealed Object (WSCOS) aims to segment objects well blended with surrounding environments.
It is hard to distinguish concealed objects from the background due to the intrinsic similarity.
We propose a new WSCOS method to address these two challenges.
arXiv Detail & Related papers (2023-05-18T14:31:34Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.