Explainable artificial intelligence (XAI): from inherent explainability to large language models
- URL: http://arxiv.org/abs/2501.09967v1
- Date: Fri, 17 Jan 2025 06:16:57 GMT
- Title: Explainable artificial intelligence (XAI): from inherent explainability to large language models
- Authors: Fuseini Mumuni, Alhassan Mumuni,
- Abstract summary: Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models.
This paper details the advancements of explainable AI methods, from inherently interpretable models to modern approaches.
We review explainable AI techniques that leverage vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models.
- Score: 0.0
- License:
- Abstract: Artificial Intelligence (AI) has continued to achieve tremendous success in recent times. However, the decision logic of these frameworks is often not transparent, making it difficult for stakeholders to understand, interpret or explain their behavior. This limitation hinders trust in machine learning systems and causes a general reluctance towards their adoption in practical applications, particularly in mission-critical domains like healthcare and autonomous driving. Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models, enabling users to discern the basis of the decision and possibly avert undesirable behavior. This comprehensive survey details the advancements of explainable AI methods, from inherently interpretable models to modern approaches for achieving interpretability of various black box models, including large language models (LLMs). Additionally, we review explainable AI techniques that leverage LLM and vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models. The use of LLM and VLM as interpretability methods particularly enables high-level, semantically meaningful explanations of model decisions and behavior. Throughout the paper, we highlight the scientific principles, strengths and weaknesses of state-of-the-art methods and outline different areas of improvement. Where appropriate, we also present qualitative and quantitative comparison results of various methods to show how they compare. Finally, we discuss the key challenges of XAI and directions for future research.
Related papers
- Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
We review the eXplainable AI (XAI) tools and techniques in this context.
We focus on their role in making AI decision-making transparent, particularly in critical scenarios where humans are involved.
We discuss current limitations and potential future research that aims to balance explainability with model performance.
arXiv Detail & Related papers (2024-04-17T17:49:38Z) - Explain To Decide: A Human-Centric Review on the Role of Explainable
Artificial Intelligence in AI-assisted Decision Making [1.0878040851638]
Machine learning models are error-prone and cannot be used autonomously.
Explainable Artificial Intelligence (XAI) aids end-user understanding of the model.
This paper surveyed the recent empirical studies on XAI's impact on human-AI decision-making.
arXiv Detail & Related papers (2023-12-11T22:35:21Z) - A Comprehensive Review on Financial Explainable AI [29.229196780505532]
We provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance.
We categorize the collection of explainable AI methods according to their corresponding characteristics.
We review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.
arXiv Detail & Related papers (2023-09-21T10:30:49Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Rational Shapley Values [0.0]
Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
arXiv Detail & Related papers (2021-06-18T15:45:21Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.