論文の概要: Virtual Nodes Improve Long-term Traffic Prediction
- arxiv url: http://arxiv.org/abs/2501.10048v1
- Date: Fri, 17 Jan 2025 09:09:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:34.772310
- Title: Virtual Nodes Improve Long-term Traffic Prediction
- Title(参考訳): 仮想ノードによる長期トラフィック予測の改善
- Authors: Xiaoyang Cao, Dingyi Zhuang, Jinhua Zhao, Shenhao Wang,
- Abstract要約: 本研究では,仮想ノードを組み込んだ新しいフレームワークを紹介し,グラフに追加したノードを既存ノードに接続する。
提案モデルでは,セミアダプティブ・アジャシエイト行列を構築し,仮想ノードを組み込んだ。
実験により,仮想ノードの挿入は長期予測精度を著しく向上させることが示された。
- 参考スコア(独自算出の注目度): 9.125554921271338
- License:
- Abstract: Effective traffic prediction is a cornerstone of intelligent transportation systems, enabling precise forecasts of traffic flow, speed, and congestion. While traditional spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in short-term traffic forecasting, their performance in long-term predictions remains limited. This challenge arises from over-squashing problem, where bottlenecks and limited receptive fields restrict information flow and hinder the modeling of global dependencies. To address these challenges, this study introduces a novel framework that incorporates virtual nodes, which are additional nodes added to the graph and connected to existing nodes, in order to aggregate information across the entire graph within a single GNN layer. Our proposed model incorporates virtual nodes by constructing a semi-adaptive adjacency matrix. This matrix integrates distance-based and adaptive adjacency matrices, allowing the model to leverage geographical information while also learning task-specific features from data. Experimental results demonstrate that the inclusion of virtual nodes significantly enhances long-term prediction accuracy while also improving layer-wise sensitivity to mitigate the over-squashing problem. Virtual nodes also offer enhanced explainability by focusing on key intersections and high-traffic areas, as shown by the visualization of their adjacency matrix weights on road network heat maps. Our advanced approach enhances the understanding and management of urban traffic systems, making it particularly well-suited for real-world applications.
- Abstract(参考訳): 効果的な交通予測はインテリジェント交通システムの基盤であり、交通の流れ、速度、渋滞の正確な予測を可能にする。
従来の時空間グラフニューラルネットワーク(ST-GNN)は、短期的なトラフィック予測において顕著な成功を収めてきたが、長期的な予測のパフォーマンスは依然として限られている。
この課題は、ボトルネックや制限された受容領域が情報の流れを制限し、グローバルな依存関係のモデリングを妨げるという過度な問題から生じる。
これらの課題に対処するために、単一のGNN層内でグラフ全体の情報を集約するために、グラフに追加され、既存のノードに接続された仮想ノードを組み込んだ新しいフレームワークを導入する。
提案モデルでは,セミアダプティブ・アジャシエイト行列を構築し,仮想ノードを組み込んだ。
この行列は、距離ベースおよび適応的隣接行列を統合し、データからタスク固有の特徴を学習しながら、地理的情報を活用することができる。
実験結果から,仮想ノードの挿入は長期予測精度を著しく向上させるとともに,レイヤワイズ感度を改善してオーバーカッシング問題を緩和することを示した。
仮想ノードはまた、道路ネットワークの熱マップ上の隣接行列重みの可視化によって示されるように、重要な交差点と高交通領域に焦点を当てることで、説明可能性を向上させる。
我々の先進的なアプローチは、都市交通システムの理解と管理を強化し、現実世界の応用に特に適している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
本研究では,グラフプルーニングと転送学習の枠組みに基づく新しい時空間畳み込みネットワーク(TL-GPSTGN)を提案する。
その結果、単一のデータセット上でのTL-GPSTGNの異常な予測精度と、異なるデータセット間の堅牢なマイグレーション性能が示された。
論文 参考訳(メタデータ) (2024-09-25T00:59:23Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
本研究では,長期交通パラメータ予測問題に対処する新しい時空間ニューラルネットワークアーキテクチャを提案する。
注意機構は、遠方の入力から重要な情報を失うことなく、長期的な予測性能を保証する可能性がある。
論文 参考訳(メタデータ) (2022-10-01T05:58:22Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。