AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation using Tree-based Search
- URL: http://arxiv.org/abs/2501.10053v2
- Date: Fri, 14 Feb 2025 15:20:47 GMT
- Title: AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation using Tree-based Search
- Authors: Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi Song, Hao Wang,
- Abstract summary: We propose a novel thinking pattern in RAG that integrates system analysis with efficient reasoning actions.
Specifically, our approach designs five fundamental reasoning actions, which are expanded to a broad tree-based reasoning space.
Experimental results demonstrate the effectiveness of AirRAG, showing significant performance gains on complex question-answering datasets.
- Score: 4.4907551923591695
- License:
- Abstract: Leveraging the autonomous decision-making capabilities of large language models (LLMs) has demonstrated superior performance in reasoning tasks. However, despite the success of iterative or recursive retrieval-augmented generation (RAG) techniques, these methods are often constrained to a single solution space when confronted with complex problems. In this paper, we propose a novel thinking pattern in RAG that integrates system analysis with efficient reasoning actions, significantly activating intrinsic reasoning capabilities and expanding the solution space of specific tasks via Monte Carlo Tree Search (MCTS), which we refer to as AirRAG. Specifically, our approach designs five fundamental reasoning actions, which are expanded to a broad tree-based reasoning space using MCTS. The approach also incorporates self-consistency verification to explore potential reasoning paths and inference scaling law. Additionally, computationally optimal strategies are employed to allocate more inference resources to key actions, thereby enhancing overall performance. Experimental results demonstrate the effectiveness of AirRAG, showing significant performance gains on complex question-answering datasets. Furthermore, AirRAG is flexible and lightweight, making it easy to integrate with other advanced technologies.
Related papers
- Policy Guided Tree Search for Enhanced LLM Reasoning [3.090041654375235]
Policy-Guided Tree Search (PGTS) is a framework that combines reinforcement learning with structured tree exploration to efficiently navigate reasoning paths.
Our key innovation is a learned policy that dynamically decides between expanding, branching, backtracking, or terminating exploration, eliminating the need for manuals or exhaustive search.
arXiv Detail & Related papers (2025-02-04T22:08:20Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)
By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.
Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.
We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.
Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Generalizing Goal-Conditioned Reinforcement Learning with Variational
Causal Reasoning [24.09547181095033]
Causal Graph is a structure built upon the relation between objects and events.
We propose a framework with theoretical performance guarantees that alternates between two steps.
Our performance improvement is attributed to the virtuous cycle of causal discovery, transition modeling, and policy training.
arXiv Detail & Related papers (2022-07-19T05:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.