AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation using Tree-based Search
- URL: http://arxiv.org/abs/2501.10053v2
- Date: Fri, 14 Feb 2025 15:20:47 GMT
- Title: AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation using Tree-based Search
- Authors: Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi Song, Hao Wang,
- Abstract summary: We propose a novel thinking pattern in RAG that integrates system analysis with efficient reasoning actions.<n>Specifically, our approach designs five fundamental reasoning actions, which are expanded to a broad tree-based reasoning space.<n> Experimental results demonstrate the effectiveness of AirRAG, showing significant performance gains on complex question-answering datasets.
- Score: 4.4907551923591695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging the autonomous decision-making capabilities of large language models (LLMs) has demonstrated superior performance in reasoning tasks. However, despite the success of iterative or recursive retrieval-augmented generation (RAG) techniques, these methods are often constrained to a single solution space when confronted with complex problems. In this paper, we propose a novel thinking pattern in RAG that integrates system analysis with efficient reasoning actions, significantly activating intrinsic reasoning capabilities and expanding the solution space of specific tasks via Monte Carlo Tree Search (MCTS), which we refer to as AirRAG. Specifically, our approach designs five fundamental reasoning actions, which are expanded to a broad tree-based reasoning space using MCTS. The approach also incorporates self-consistency verification to explore potential reasoning paths and inference scaling law. Additionally, computationally optimal strategies are employed to allocate more inference resources to key actions, thereby enhancing overall performance. Experimental results demonstrate the effectiveness of AirRAG, showing significant performance gains on complex question-answering datasets. Furthermore, AirRAG is flexible and lightweight, making it easy to integrate with other advanced technologies.
Related papers
- ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.
We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.
Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search [27.378904180238557]
We introduce MCTS-RAG, a novel approach that enhances the reasoning capabilities of small language models on knowledge-intensive tasks.
Unlike standard RAG methods, which typically retrieve information independently from reasoning, MCTS-RAG combines structured reasoning with adaptive retrieval.
This integrated approach enhances decision-making, reduces hallucinations, and ensures improved factual accuracy and response consistency.
arXiv Detail & Related papers (2025-03-26T17:46:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents [27.90338725230132]
ViDoSeek is a dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning.
We propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents.
Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.
arXiv Detail & Related papers (2025-02-25T09:26:12Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)
By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.
Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAG is an autonomous iterative retrieval model centered on the reasoning capabilities of Large Language Models (LLMs)<n>We develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval.<n>Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability.
arXiv Detail & Related papers (2024-11-29T03:01:05Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.<n>We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - SPO: Sequential Monte Carlo Policy Optimisation [41.52684912140086]
We introduce SPO: Sequential Monte Carlo Policy optimisation.
We show that SPO provides robust policy improvement and efficient scaling properties.
We demonstrate statistically significant improvements in performance relative to model-free and model-based baselines.
arXiv Detail & Related papers (2024-02-12T10:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.