Exploring the Impact of Generative Artificial Intelligence in Education: A Thematic Analysis
- URL: http://arxiv.org/abs/2501.10134v1
- Date: Fri, 17 Jan 2025 11:49:49 GMT
- Title: Exploring the Impact of Generative Artificial Intelligence in Education: A Thematic Analysis
- Authors: Abhishek Kaushik, Sargam Yadav, Andrew Browne, David Lillis, David Williams, Jack Mc Donnell, Peadar Grant, Siobhan Connolly Kernan, Shubham Sharma, Mansi Arora,
- Abstract summary: Large Language Models (LLMs) such as ChatGPT and Bard can be leveraged to automate boilerplate tasks.
It is important to develop guidelines, policies, and assessment methods in the education sector to ensure the responsible integration of these tools.
- Score: 0.7701938856931689
- License:
- Abstract: The recent advancements in Generative Artificial intelligence (GenAI) technology have been transformative for the field of education. Large Language Models (LLMs) such as ChatGPT and Bard can be leveraged to automate boilerplate tasks, create content for personalised teaching, and handle repetitive tasks to allow more time for creative thinking. However, it is important to develop guidelines, policies, and assessment methods in the education sector to ensure the responsible integration of these tools. In this article, thematic analysis has been performed on seven essays obtained from professionals in the education sector to understand the advantages and pitfalls of using GenAI models such as ChatGPT and Bard in education. Exploratory Data Analysis (EDA) has been performed on the essays to extract further insights from the text. The study found several themes which highlight benefits and drawbacks of GenAI tools, as well as suggestions to overcome these limitations and ensure that students are using these tools in a responsible and ethical manner.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Generative AI and Agency in Education: A Critical Scoping Review and Thematic Analysis [0.0]
This review examines the relationship between Generative AI (GenAI) and agency in education, analyzing the literature available through the lens of Critical Digital Pedagogy.
We conducted an AI-supported hybrid thematic analysis that revealed three key themes: Control in Digital Spaces, Variable Engagement and Access, and Changing Notions of Agency.
The findings suggest that while GenAI may enhance learner agency through personalization and support, it also risks exacerbating educational inequalities and diminishing learner autonomy in certain contexts.
arXiv Detail & Related papers (2024-11-01T14:40:31Z) - A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
Test Automation (TA) techniques are crucial for quality assurance in software engineering but face limitations.
Given the prevalent usage of AI in industry, sources of truth are held in grey literature as well as the minds of professionals.
This study surveys grey literature to explore how AI is adopted in TA, focusing on the problems it solves, its solutions, and the available tools.
arXiv Detail & Related papers (2024-08-12T15:26:36Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments [0.0]
The effective integration of generative artificial intelligence in education is a fundamental aspect to prepare future generations.
The objective of this study is to analyze from a quantitative and qualitative point of view the perception of controlled student-IA interaction within the classroom.
arXiv Detail & Related papers (2024-05-22T09:56:05Z) - Higher education assessment practice in the era of generative AI tools [0.37282630026096586]
This study experimented using three assessment instruments from data science, data analytics, and construction management disciplines.
Our findings revealed that GenAI tools exhibit subject knowledge, problem-solving, analytical, critical thinking, and presentation skills.
Based on our findings, we made recommendations on how AI tools can be utilised for teaching and learning in HE.
arXiv Detail & Related papers (2024-04-01T10:43:50Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
We introduce an intelligent system (CL-XAI) for Cognitive Learning which is supported by artificial intelligence (AI) tools.
The use of CL-XAI is illustrated with a game-inspired virtual use case where learners tackle problems to enhance problem-solving skills.
arXiv Detail & Related papers (2023-12-19T16:13:47Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Explainable Authorship Identification in Cultural Heritage Applications:
Analysis of a New Perspective [48.031678295495574]
We explore the applicability of existing general-purpose eXplainable Artificial Intelligence (XAI) techniques to AId.
In particular, we assess the relative merits of three different types of XAI techniques on three different AId tasks.
Our analysis shows that, while these techniques make important first steps towards explainable Authorship Identification, more work remains to be done.
arXiv Detail & Related papers (2023-11-03T20:51:15Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
This paper presents a questionnaire survey to identify the intention to use generative tools by employees of an IT company.
Our results indicate a rather average acceptability of generative tools, although the more useful the tool is perceived to be, the higher the intention seems to be.
Our analyses suggest that the frequency of use of generative tools is likely to be a key factor in understanding how employees perceive these tools in the context of their work.
arXiv Detail & Related papers (2023-04-18T15:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.