Contributions to the Decision Theoretic Foundations of Machine Learning and Robust Statistics under Weakly Structured Information
- URL: http://arxiv.org/abs/2501.10195v1
- Date: Fri, 17 Jan 2025 13:39:51 GMT
- Title: Contributions to the Decision Theoretic Foundations of Machine Learning and Robust Statistics under Weakly Structured Information
- Authors: Christoph Jansen,
- Abstract summary: The core of this thesis is formed by the ten publications listed on page 5 under the name Contributions 1 to 10.
The chapters following this thesis, namely Parts A to C and the concluding remarks, serve to place the articles in a larger scientific context.
The purpose of the following text is to provide the reader an easy and high-level access to this interesting and important research field as a whole.
- Score: 0.0
- License:
- Abstract: This habilitation thesis is cumulative and, therefore, is collecting and connecting research that I (together with several co-authors) have conducted over the last few years. Thus, the absolute core of the work is formed by the ten publications listed on page 5 under the name Contributions 1 to 10. The references to the complete versions of these articles are also found in this list, making them as easily accessible as possible for readers wishing to dive deep into the different research projects. The chapters following this thesis, namely Parts A to C and the concluding remarks, serve to place the articles in a larger scientific context, to (briefly) explain their respective content on a less formal level, and to highlight some interesting perspectives for future research in their respective contexts. Naturally, therefore, the following presentation has neither the level of detail nor the formal rigor that can (hopefully) be found in the papers. The purpose of the following text is to provide the reader an easy and high-level access to this interesting and important research field as a whole, thereby, advertising it to a broader audience.
Related papers
- ChatGPT Application In Summarizing An Evolution Of Deep Learning
Techniques In Imaging: A Qualitative Study [0.0]
ChatGPT 3.5 exhibits the capacity to condense the content of up to 3000 tokens into a single page.
We selected seven scientific articles and employed the publicly available ChatGPT service to generate summaries of these articles.
There was a slight diminishment in the technical depth of the summaries as opposed to the original articles.
arXiv Detail & Related papers (2023-11-26T23:22:37Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
We propose the task of scientific opinion summarization, where research paper reviews are synthesized into meta-reviews.
We introduce the ORSUM dataset covering 15,062 paper meta-reviews and 57,536 paper reviews from 47 conferences.
Our experiments show that (1) human-written summaries do not always satisfy all necessary criteria such as depth of discussion, and identifying consensus and controversy for the specific domain, and (2) the combination of task decomposition and iterative self-refinement shows strong potential for enhancing the opinions.
arXiv Detail & Related papers (2023-05-24T02:33:35Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - NLPeer: A Unified Resource for the Computational Study of Peer Review [58.71736531356398]
We introduce NLPeer -- the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues.
We augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information.
Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond.
arXiv Detail & Related papers (2022-11-12T12:29:38Z) - Making Science Simple: Corpora for the Lay Summarisation of Scientific
Literature [21.440724685950443]
We present two novel lay summarisation datasets, PLOS (large-scale) and eLife (medium-scale)
We provide a thorough characterisation of our lay summaries, highlighting differing levels of readability and abstractiveness between datasets.
arXiv Detail & Related papers (2022-10-18T15:28:30Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
We use the citation graph of referential links between citing and cited papers.
We observe a sizable improvement in end-to-end information extraction over the state-of-the-art.
arXiv Detail & Related papers (2021-06-03T03:00:12Z) - Bringing Structure into Summaries: a Faceted Summarization Dataset for
Long Scientific Documents [30.09742243490895]
FacetSum is a faceted summarization benchmark built on Emerald journal articles.
Analyses and empirical results on our dataset reveal the importance of bringing structure into summaries.
We believe FacetSum will spur further advances in summarization research and foster the development of NLP systems.
arXiv Detail & Related papers (2021-05-31T22:58:38Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z) - NLPContributions: An Annotation Scheme for Machine Reading of Scholarly
Contributions in Natural Language Processing Literature [0.0]
We describe an annotation initiative to capture the scholarly contributions in natural language processing (NLP) articles.
We develop the annotation task based on a pilot exercise on 50 NLP-ML scholarly articles presenting contributions to five information extraction tasks.
We envision that the NLPContributions methodology engenders a wider discussion on the topic toward its further refinement and development.
arXiv Detail & Related papers (2020-06-23T10:04:39Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
Text summarization is the research area aiming at creating a short and condensed version of the original document.
In real-world applications, most of the data is not in a plain text format.
This paper focuses on the survey of these new summarization tasks and approaches in the real-world application.
arXiv Detail & Related papers (2020-05-10T14:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.