論文の概要: Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
- arxiv url: http://arxiv.org/abs/2501.10202v1
- Date: Fri, 17 Jan 2025 13:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:46.083521
- Title: Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
- Title(参考訳): OODと周辺サンプルからの分類器の保護の可能性--極値理論のアプローチ
- Authors: Nicolas Atienza, Christophe Labreuche, Johanne Cohen, Michele Sebag,
- Abstract要約: 本稿では, 極値理論(SPADE)を用いたサンプル効率確率検出法を提案する。
このアプローチは、分類器の潜在空間におけるトレーニング分布の一般化極値(GEV)モデルに基づいている。
評価に基づいてサンプルを拒絶する禁忌分類器は、敵のサンプルを確実に回避する。
- 参考スコア(独自算出の注目度): 2.5674049243330255
- License:
- Abstract: This paper introduces a novel method, Sample-efficient Probabilistic Detection using Extreme Value Theory (SPADE), which transforms a classifier into an abstaining classifier, offering provable protection against out-of-distribution and adversarial samples. The approach is based on a Generalized Extreme Value (GEV) model of the training distribution in the classifier's latent space, enabling the formal characterization of OOD samples. Interestingly, under mild assumptions, the GEV model also allows for formally characterizing adversarial samples. The abstaining classifier, which rejects samples based on their assessment by the GEV model, provably avoids OOD and adversarial samples. The empirical validation of the approach, conducted on various neural architectures (ResNet, VGG, and Vision Transformer) and medium and large-sized datasets (CIFAR-10, CIFAR-100, and ImageNet), demonstrates its frugality, stability, and efficiency compared to the state of the art.
- Abstract(参考訳): 本稿では, 極値理論(SPADE)を用いたサンプル効率確率検出手法を提案する。
このアプローチは、分類器の潜在空間におけるトレーニング分布の一般化極値(GEV)モデルに基づいており、OODサンプルの形式的特徴付けを可能にする。
興味深いことに、軽微な仮定の下では、GEVモデルは敵のサンプルを正式に特徴づけることもできる。
GEVモデルによる評価に基づいてサンプルを拒絶する吸収型分類器は、OODおよび敵検体を確実に回避する。
様々なニューラルアーキテクチャ(ResNet、VGG、Vision Transformer)と中規模および大規模データセット(CIFAR-10、CIFAR-100、ImageNet)で実施されたアプローチの実証的検証は、最先端技術と比較して、その剛性、安定性、効率性を実証している。
関連論文リスト
- Credal Wrapper of Model Averaging for Uncertainty Estimation on Out-Of-Distribution Detection [5.19656787424626]
本稿では,ベイズニューラルネットワーク(BNN)と深層アンサンブルのモデル平均化のクレダルセット表現を定式化するための,クレダルラッパー(redal wrapper)と呼ばれる革新的なアプローチを提案する。
BNNや深層アンサンブルから導かれる単一分布の有限個の集合が与えられた場合、提案手法はクラスごとの上層と下層の確率境界を抽出する。
提案手法は,BNNおよび深層アンサンブルベースラインと比較して,不確実性推定において優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-23T20:51:22Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
我々は,ビザドサンプルを最大限に活用することで,ロバストなVQAモデルを構築するための新しいコントラスト学習手法 MMBS を提案する。
具体的には、元のトレーニングサンプルからスプリアス相関に関連する情報を排除し、比較学習のための正のサンプルを構築する。
我々は,OODデータセットのVQA-CP v2において,IDデータセットのVQA v2上での堅牢なパフォーマンスを維持しながら,競争性能を達成することで,コントリビューションを検証した。
論文 参考訳(メタデータ) (2022-10-10T11:05:21Z) - Understanding, Detecting, and Separating Out-of-Distribution Samples and
Adversarial Samples in Text Classification [80.81532239566992]
本稿では,2種類の異常 (OOD と Adv のサンプル) と,3つの側面の内分布 (ID) を比較した。
OODサンプルは第1層から始まる収差を露呈するが,Advサンプルの異常はモデル深層まで出現しない。
隠れ表現と出力確率を用いて,ID,OOD,Advのサンプルを分離する簡単な手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T12:11:59Z) - UQGAN: A Unified Model for Uncertainty Quantification of Deep
Classifiers trained via Conditional GANs [9.496524884855559]
本稿では,GAN(Generative Adversarial Network)に基づく画像分類におけるディープニューラルネットワークの不確実性の定量化手法を提案する。
GAN の生成した OoD の例で分散データの全体を保護する代わりに,条件付き GAN によって生成されたクラスを別々に保護する。
特に、最先端のGAN学習に基づく分類器のOoD検出とFP検出性能を改善した。
論文 参考訳(メタデータ) (2022-01-31T14:42:35Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
ディープ・ニューラル・ネットワークに基づく分類器のトレーニングデータは、通常同じ分布からサンプリングされる。
トレーニングサンプルから遠く離れた分布からテストサンプルの一部を引き出すと、トレーニングされたニューラルネットワークはこれらのOODサンプルに対して高い信頼性の予測を行う傾向にある。
本稿では,これらの課題を克服するため,Wasserstein を用いたアウト・オブ・ディストリビューション検出(WOOD)手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:35:15Z) - AdaPT-GMM: Powerful and robust covariate-assisted multiple testing [0.7614628596146599]
偽発見率(FDR)制御を用いた複数検定の実証的ベイズ法を提案する。
本手法は,アダプティブp値しきい値法(AdaPT)をマスク方式の一般化により洗練する。
我々は、AdaPT-GMMと呼ばれる新しい手法が一貫して高出力を実現することを、広範囲にわたるシミュレーションと実データ例で示す。
論文 参考訳(メタデータ) (2021-06-30T05:06:18Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
我々は,$k$-NN 密度推定値を用いて OOD サンプルを検出する教師なし手法を提案する。
emphLabel Smoothed Embedding hypothesis と呼ばれるラベル平滑化に関する最近の知見を活用する。
提案手法は,多くのOODベースラインを上回り,新しい有限サンプル高確率統計結果を提供することを示す。
論文 参考訳(メタデータ) (2021-02-09T21:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。