Hypercone Assisted Contour Generation for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2501.10209v2
- Date: Mon, 17 Feb 2025 19:55:38 GMT
- Title: Hypercone Assisted Contour Generation for Out-of-Distribution Detection
- Authors: Annita Vapsi, Andrés Muñoz, Nancy Thomas, Keshav Ramani, Daniel Borrajo,
- Abstract summary: We present HAC$_k$-OOD, a novel OOD detection method that makes no distributional assumption about the data, but automatically adapts to its distribution.
Experimental results show state-of-the-art FPR@95 and AUROC performance on Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100 benchmark.
- Score: 1.8579732097380193
- License:
- Abstract: Recent advances in the field of out-of-distribution (OOD) detection have placed great emphasis on learning better representations suited to this task. While there are distance-based approaches, distributional awareness has seldom been exploited for better performance. We present HAC$_k$-OOD, a novel OOD detection method that makes no distributional assumption about the data, but automatically adapts to its distribution. Specifically, HAC$_k$-OOD constructs a set of hypercones by maximizing the angular distance to neighbors in a given data-point's vicinity to approximate the contour within which in-distribution (ID) data-points lie. Experimental results show state-of-the-art FPR@95 and AUROC performance on Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100 benchmark without explicitly training for OOD performance.
Related papers
- Look Around and Find Out: OOD Detection with Relative Angles [24.369626931550794]
We propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure.
Our method achieves state-of-the-art performance on CIFAR-10 and ImageNet benchmarks, reducing FPR95 by 0.88% and 7.74% respectively.
arXiv Detail & Related papers (2024-10-06T15:36:07Z) - Continual Unsupervised Out-of-Distribution Detection [5.019613806273252]
Current approaches assume that out-of-distribution samples originate from an unconcentrated distribution complementary to the training distribution.
We propose a method that starts from a U-OOD detector, which is agnostic to the OOD distribution, and slowly updates during deployment to account for the actual OOD distribution.
Our method uses a new U-OOD scoring function that combines the Mahalanobis distance with a nearest-neighbor approach.
arXiv Detail & Related papers (2024-06-04T13:57:34Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
Out-of-distribution (OOD) detection methods assume that they have test ground truths, i.e., whether individual test samples are in-distribution (IND) or OOD.
In this paper, we are the first to introduce the unsupervised evaluation problem in OOD detection.
We propose three methods to compute Gscore as an unsupervised indicator of OOD detection performance.
arXiv Detail & Related papers (2023-02-16T13:34:35Z) - Out-of-distribution Detection with Deep Nearest Neighbors [33.71627349163909]
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world.
In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection.
We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance.
arXiv Detail & Related papers (2022-04-13T16:45:21Z) - How to Exploit Hyperspherical Embeddings for Out-of-Distribution
Detection? [22.519572587827213]
CIDER is a representation learning framework that exploits hyperspherical embeddings for OOD detection.
CIDER establishes superior performance, outperforming the latest rival by 19.36% in FPR95.
arXiv Detail & Related papers (2022-03-08T23:44:01Z) - ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining [51.19164318924997]
Adrial Training with informative Outlier Mining improves robustness of OOD detection.
ATOM achieves state-of-the-art performance under a broad family of classic and adversarial OOD evaluation tasks.
arXiv Detail & Related papers (2020-06-26T20:58:05Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.