Look Around and Find Out: OOD Detection with Relative Angles
- URL: http://arxiv.org/abs/2410.04525v1
- Date: Sun, 6 Oct 2024 15:36:07 GMT
- Title: Look Around and Find Out: OOD Detection with Relative Angles
- Authors: Berker Demirel, Marco Fumero, Francesco Locatello,
- Abstract summary: We propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure.
Our method achieves state-of-the-art performance on CIFAR-10 and ImageNet benchmarks, reducing FPR95 by 0.88% and 7.74% respectively.
- Score: 24.369626931550794
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning systems deployed in real-world applications often encounter data that is different from their in-distribution (ID). A reliable system should ideally abstain from making decisions in this out-of-distribution (OOD) setting. Existing state-of-the-art methods primarily focus on feature distances, such as k-th nearest neighbors and distances to decision boundaries, either overlooking or ineffectively using in-distribution statistics. In this work, we propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure. We demonstrate that the angles between feature representations and decision boundaries, viewed from the mean of in-distribution features, serve as an effective discriminative factor between ID and OOD data. Our method achieves state-of-the-art performance on CIFAR-10 and ImageNet benchmarks, reducing FPR95 by 0.88% and 7.74% respectively. Our score function is compatible with existing feature space regularization techniques, enhancing performance. Additionally, its scale-invariance property enables creating an ensemble of models for OOD detection via simple score summation.
Related papers
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
We introduce textitFlowCon, a new density-based OOD detection technique.
Our main innovation lies in efficiently combining the properties of normalizing flow with supervised contrastive learning.
Empirical evaluation shows the enhanced performance of our method across common vision datasets.
arXiv Detail & Related papers (2024-07-03T20:33:56Z) - How to Overcome Curse-of-Dimensionality for Out-of-Distribution
Detection? [29.668859994222238]
We propose a novel framework, Subspace Nearest Neighbor (SNN), for OOD detection.
In training, our method regularizes the model and its feature representation by leveraging the most relevant subset of dimensions.
Compared to the current best distance-based method, SNN reduces the average FPR95 by 15.96% on the CIFAR-100 benchmark.
arXiv Detail & Related papers (2023-12-22T06:04:09Z) - Fast Decision Boundary based Out-of-Distribution Detector [7.04686607977352]
Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems.
Existing feature space methods, while effective, often incur significant computational overhead.
We propose a computationally-efficient OOD detector without using auxiliary models.
arXiv Detail & Related papers (2023-12-15T19:50:32Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Boosting Out-of-distribution Detection with Typical Features [22.987563801433595]
Out-of-distribution (OOD) detection is a critical task for ensuring the reliability and safety of deep neural networks in real-world scenarios.
We propose to rectify the feature into its typical set and calculate the OOD score with the typical features to achieve reliable uncertainty estimation.
We evaluate the superiority of our method on both the commonly used benchmark (CIFAR) and the more challenging high-resolution benchmark with large label space (ImageNet)
arXiv Detail & Related papers (2022-10-09T08:44:22Z) - Out-of-distribution Detection with Deep Nearest Neighbors [33.71627349163909]
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world.
In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection.
We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance.
arXiv Detail & Related papers (2022-04-13T16:45:21Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.