Random-Key Algorithms for Optimizing Integrated Operating Room Scheduling
- URL: http://arxiv.org/abs/2501.10243v2
- Date: Fri, 24 Jan 2025 15:59:16 GMT
- Title: Random-Key Algorithms for Optimizing Integrated Operating Room Scheduling
- Authors: Bruno Salezze Vieira, Eduardo Machado Silva, Antonio Augusto Chaves,
- Abstract summary: This study introduces a novel concept of Random-Key (RKO), rigorously tested on literature and new real-world inspired instances.
Our literature optimization problem incorporates multi-room scheduling, equipment scheduling, and complex availability constraints.
The RKO approach represents solutions as points in a continuous space, which are then mapped in the problem solution space via a deterministic function known as a decoder.
- Score: 0.16385815610837165
- License:
- Abstract: Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses this challenge by introducing a novel concept of Random-Key Optimizer (RKO), rigorously tested on literature and new, real-world inspired instances. Our combinatorial optimization problem incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. The RKO approach represents solutions as points in a continuous space, which are then mapped in the problem solution space via a deterministic function known as a decoder. The core idea is to operate metaheuristics and heuristics in the random-key space, unaware of the original solution space. We design the Biased Random-Key Genetic Algorithm with $Q$-Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed metaheuristics are complemented by lower-bound formulations, providing optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower and upper bounds improvements for the literature instances, notably proving one optimal result. Furthermore, the best-proposed metaheuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, offering tangible benefits to hospitals by optimising resource allocation, reducing patient wait times, and enhancing overall operational efficiency.
Related papers
- Pareto Optimization with Robust Evaluation for Noisy Subset Selection [34.83487850400559]
Subset selection is a fundamental problem in optimization, which has a wide range of applications such as influence and sparse regression.
Previous algorithms, including the greedy algorithm and evolutionary evolutionary POSS, either struggle in noisy environments or consume excessive computational resources.
We propose a novel approach based on Pareto Optimization with Robust Evaluation for noisy subset selection (PORE), which maximizes a robust evaluation function and minimizes the subset size simultaneously.
arXiv Detail & Related papers (2025-01-12T14:04:20Z) - Faster Stochastic Variance Reduction Methods for Compositional MiniMax
Optimization [50.10952609321302]
compositional minimax optimization is a pivotal challenge across various machine learning domains.
Current methods of compositional minimax optimization are plagued by sub-optimal complexities or heavy reliance on sizable batch sizes.
This paper introduces a novel method, called Nested STOchastic Recursive Momentum (NSTORM), which can achieve the optimal sample complexity of $O(kappa3 /epsilon3 )$.
arXiv Detail & Related papers (2023-08-18T14:57:21Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Quasi-optimal Reinforcement Learning with Continuous Actions [8.17049210746654]
We develop a novel emphquasi-optimal learning algorithm, which can be easily optimized in off-policy settings.
We evaluate our algorithm with comprehensive simulated experiments and a dose suggestion real application to Ohio Type 1 diabetes dataset.
arXiv Detail & Related papers (2023-01-21T11:30:13Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.