Symmetric Replay Training: Enhancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization
- URL: http://arxiv.org/abs/2306.01276v4
- Date: Wed, 17 Jul 2024 05:55:45 GMT
- Title: Symmetric Replay Training: Enhancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization
- Authors: Hyeonah Kim, Minsu Kim, Sungsoo Ahn, Jinkyoo Park,
- Abstract summary: We propose a simple but effective method, called symmetric replay training (SRT), which can be easily integrated into various Deep reinforcement learning (DRL) methods.
Our method leverages high-reward samples to encourage exploration of symmetric regions without additional online interactions - free.
Experimental results demonstrate the consistent improvement of our method in sample efficiency across diverse DRL methods applied to real-world tasks.
- Score: 42.92248233465095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has significantly advanced the field of combinatorial optimization (CO). However, its practicality is hindered by the necessity for a large number of reward evaluations, especially in scenarios involving computationally intensive function assessments. To enhance the sample efficiency, we propose a simple but effective method, called symmetric replay training (SRT), which can be easily integrated into various DRL methods. Our method leverages high-reward samples to encourage exploration of the under-explored symmetric regions without additional online interactions - free. Through replay training, the policy is trained to maximize the likelihood of the symmetric trajectories of discovered high-rewarded samples. Experimental results demonstrate the consistent improvement of our method in sample efficiency across diverse DRL methods applied to real-world tasks, such as molecular optimization and hardware design.
Related papers
- Adaptive teachers for amortized samplers [76.88721198565861]
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnormalized density where exact sampling is intractable.
Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration.
We propose an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions.
arXiv Detail & Related papers (2024-10-02T11:33:13Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Adaptive trajectory-constrained exploration strategy for deep
reinforcement learning [6.589742080994319]
Deep reinforcement learning (DRL) faces significant challenges in addressing the hard-exploration problems in tasks with sparse or deceptive rewards and large state spaces.
We propose an efficient adaptive trajectory-constrained exploration strategy for DRL.
We conduct experiments on two large 2D grid world mazes and several MuJoCo tasks.
arXiv Detail & Related papers (2023-12-27T07:57:15Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Off-Policy RL Algorithms Can be Sample-Efficient for Continuous Control
via Sample Multiple Reuse [28.29966904455002]
We propose to train an off-policy RL agent via updating on a fixed sampled batch multiple times.
We name our method sample multiple reuse (SMR) and show the properties of Q-learning with SMR.
SMR significantly boosts the sample efficiency of the base methods across most of the evaluated tasks.
arXiv Detail & Related papers (2023-05-29T03:25:22Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Controlled Deep Reinforcement Learning for Optimized Slice Placement [0.8459686722437155]
We present a hybrid ML-heuristic approach that we name "Heuristically Assisted Deep Reinforcement Learning (HA-DRL)"
The proposed approach leverages recent works on Deep Reinforcement Learning (DRL) for slice placement and Virtual Network Embedding (VNE)
The evaluation results show that the proposed HA-DRL algorithm can accelerate the learning of an efficient slice placement policy.
arXiv Detail & Related papers (2021-08-03T14:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.