Genuine Multipartite Nonlocality sharing under sequential measurement
- URL: http://arxiv.org/abs/2501.10274v1
- Date: Fri, 17 Jan 2025 16:01:36 GMT
- Title: Genuine Multipartite Nonlocality sharing under sequential measurement
- Authors: Sk Sahadat Hossain, Indrani Chattopadhyay,
- Abstract summary: We extend the study of quantum nonlocality sharing to $n$-qubit Greenberger-Horne-Zeilinger (GHZ) systems.
We analyze nonlocality sharing under unbiased unsharp measurements.
- Score: 0.0
- License:
- Abstract: The study of quantum nonlocality sharing has garnered significant attention, particularly for two-qubit and three-qubit entangled systems. In this paper, we extend the investigation to $n$-qubit Greenberger-Horne-Zeilinger (GHZ) systems, analyzing nonlocality sharing under unbiased unsharp measurements. Employing the Seevink and Svetlichny inequalities, we explore both unilateral and multilateral sequential measurement scenarios. In the unilateral scenario, we derive the range for which an observer's multiple copies can share genuine $n$-partite nonlocality with single copies of the remaining parties. In the multilateral scenario, we identify the maximum number of independent observers on $m$ sides who can share genuine $n$-partite nonlocality with other parties. A crucial aspect of our results is that all findings stem from a measurement strategy where each sequential observer utilizes unbiased unsharp measurements. As a specific case, for the four-qubit maximally entangled GHZ state, we demonstrate that at most two copies of an observer (e.g., Alice) can share nonlocality in the unilateral sequential measurement scenario. However, in the multilateral scenario, no additional sharing is possible compared to the unilateral case. This finding highlights the significance of unsharp measurements in optimizing the recycling of qubits for generating quantum nonlocality.
Related papers
- Storage and retrieval of two unknown unitary channels [37.928612512813494]
We consider the case where the unknown unitary is selected with equal prior probability from two options.
First, we prove that the optimal storage strategy involves the sequential application of the $n$ uses of the unknown unitary.
Next, we show that incoherent "measure-and-prepare" retrieval achieves the maximum fidelity between the retrieved operation and the original (qubit) unitary.
arXiv Detail & Related papers (2024-10-30T18:27:46Z) - Unbounded sequential multipartite nonlocality via violation of Mermin inequality [0.0]
Quantum nonlocality is a significant feature in quantum information theory.
We study sequential nonlocality in systems comprising more parties and observer chains.
Our results suggest that increasing the number of subsystems may enable more observer chains to detect nonlocality alongside single observers.
arXiv Detail & Related papers (2024-06-17T12:28:16Z) - Almost device-independent certification of GME states with minimal
measurements [41.94295877935867]
Device-independent certification of quantum states allows the characterization of quantum states present inside a device.
A major problem in this regard is to certify quantum states using minimal resources.
We consider the multipartite quantum steering scenario with an arbitrary number of parties but only one of which is trusted in the sense that the measurements performed by the trusted party are known.
arXiv Detail & Related papers (2024-02-28T17:54:55Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Sharing preparation contextuality in Bell experiment by arbitrary pair
of sequential observers [0.0]
We study the sharing of non-locality and preparation contextuality based on a bipartite Bell inequality.
We show that while non-locality can be shared only by first pair of the sequential observers, the preparation contextuality can be shared by arbitrary pair of independent sequential observers at both ends.
arXiv Detail & Related papers (2023-11-08T10:00:17Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - A Hierarchy of Multipartite Nonlocality and Device-Independent Effect
Witnesses [0.0]
A multi-party behavior is genuinely multipartite nonlocal if it cannot be modeled by measurements on an underlying network of bipartite-only nonlocal resources.
Here, we study the full hierarchy of these new candidate definitions of GMNL in three-party quantum networks.
Surprisingly, we find that this behavior, as well as the others previously studied as device-independent witnesses of entangled measurements, can all be simulated at a higher echelon of the GMNL hierarchy.
arXiv Detail & Related papers (2023-01-28T03:51:28Z) - Limitations on sharing Bell nonlocality between sequential pairs of
observers [0.4024850952459758]
Two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side.
We derive corresponding 'one-sided monogamy relations' that rule out two-sided recycling for a wide range of parameters.
Our methods may be readily applied to other types of quantum correlations, such as steering and entanglement.
arXiv Detail & Related papers (2021-02-23T09:22:58Z) - Ability of unbounded pairs of observers to achieve quantum advantage in
random access codes with a single pair of qubits [0.0]
Complications in preparing and preserving quantum correlations stimulate recycling of a single quantum resource.
We consider a scenario involving multiple independent pairs of observers acting with unbiased inputs on a single pair of spatially separated qubits sequentially.
arXiv Detail & Related papers (2021-01-04T20:33:04Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.