Hierarchical Autoregressive Transformers: Combining Byte- and Word-Level Processing for Robust, Adaptable Language Models
- URL: http://arxiv.org/abs/2501.10322v2
- Date: Mon, 20 Jan 2025 09:33:21 GMT
- Title: Hierarchical Autoregressive Transformers: Combining Byte- and Word-Level Processing for Robust, Adaptable Language Models
- Authors: Pit Neitemeier, Björn Deiseroth, Constantin Eichenberg, Lukas Balles,
- Abstract summary: Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process.
We investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing.
We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models.
- Score: 3.382910438968506
- License:
- Abstract: Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
Related papers
- Enhancing LLM Character-Level Manipulation via Divide and Conquer [108.6908427615402]
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks.
They exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution.
We propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation.
arXiv Detail & Related papers (2025-02-12T07:37:39Z) - Pushdown Layers: Encoding Recursive Structure in Transformer Language
Models [86.75729087623259]
Recursion is a prominent feature of human language, and fundamentally challenging for self-attention.
This work introduces Pushdown Layers, a new self-attention layer.
Transformers equipped with Pushdown Layers achieve dramatically better and 3-5x more sample-efficient syntactic generalization.
arXiv Detail & Related papers (2023-10-29T17:27:18Z) - From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding [22.390804161191635]
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens.
This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes.
We introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach.
arXiv Detail & Related papers (2023-05-23T23:22:20Z) - Inducing Character-level Structure in Subword-based Language Models with
Type-level Interchange Intervention Training [36.19870483966741]
We develop a causal intervention framework to learn robust and interpretable character representations inside subword-based language models.
Our method treats each character as a typed variable in a causal model and learns such causal structures.
We additionally introduce a suite of character-level tasks that systematically vary in their dependence on meaning and sequence-level context.
arXiv Detail & Related papers (2022-12-19T22:37:46Z) - A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task
Learning [8.052271364177988]
Subword tokenization is a commonly used input pre-processing step in most recent NLP models.
We propose a vocabulary-free neural tokenizer by distilling segmentation information from subword tokenization.
Our tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks.
arXiv Detail & Related papers (2022-04-22T16:50:49Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - Learning to Look Inside: Augmenting Token-Based Encoders with
Character-Level Information [29.633735942273997]
XRayEmb is a method for retrofitting existing token-based models with character-level information.
We show that incorporating XRayEmb's learned vectors into sequences of pre-trained token embeddings helps performance on both autoregressive and masked pre-trained transformer architectures.
arXiv Detail & Related papers (2021-08-01T08:09:26Z) - Charformer: Fast Character Transformers via Gradient-based Subword
Tokenization [50.16128796194463]
We propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model.
We introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters.
We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level.
arXiv Detail & Related papers (2021-06-23T22:24:14Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning
Subword Systems [78.80826533405019]
We show that we can obtain a neural machine translation model that works at the character level without requiring token segmentation.
Our study is a significant step towards high-performance and easy to train character-based models that are not extremely large.
arXiv Detail & Related papers (2020-04-29T15:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.