Principled model selection for stochastic dynamics
- URL: http://arxiv.org/abs/2501.10339v2
- Date: Wed, 29 Jan 2025 09:40:26 GMT
- Title: Principled model selection for stochastic dynamics
- Authors: Andonis Gerardos, Pierre Ronceray,
- Abstract summary: PASTIS is a principled method combining likelihood-estimation statistics with extreme value theory to suppress superfluous parameters.
It reliably identifies minimal models, even with low sampling rates or measurement error.
It applies to partial differential equations, and applies to ecological networks and reaction-diffusion dynamics.
- Score: 0.0
- License:
- Abstract: Complex dynamical systems, from macromolecules to ecosystems, are often modeled by stochastic differential equations. To learn such models from data, a common approach involves sparse selection among a large function library. However, we show that overfitting arises - not just from individual model complexity, but also from the combinatorial growth of possible models. To address this, we introduce Parsimonious Stochastic Inference (PASTIS), a principled method combining likelihood-estimation statistics with extreme value theory to suppress superfluous parameters. PASTIS outperforms existing methods and reliably identifies minimal models, even with low sampling rates or measurement error. It extends to stochastic partial differential equations, and applies to ecological networks and reaction-diffusion dynamics.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Data-driven ODE modeling of the high-frequency complex dynamics via a low-frequency dynamics model [0.0]
We propose a novel method of modeling such dynamics, including the high-frequency intermittent behavior of a fluid flow.
We construct an autonomous joint model composed of two parts: the first is an autonomous system of a base variable, and the other concerns the targeted variable being affected by a term.
The constructed joint model succeeded in not only inferring a short trajectory but also reconstructing chaotic sets and statistical properties obtained from a long trajectory.
arXiv Detail & Related papers (2024-09-01T09:06:32Z) - Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator [0.0]
Closure models are widely used in simulating complex multiscale dynamical systems such as turbulence and the earth system.
For systems without a clear scale, generalization deterministic and local closure models often lack enough capability.
We propose a datadriven modeling framework for constructing neural operator and non-local closure models.
arXiv Detail & Related papers (2024-08-06T05:21:31Z) - Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Bayesian Learning of Coupled Biogeochemical-Physical Models [28.269731698116257]
Predictive models for marine ecosystems are used for a variety of needs.
Due to sparse measurements and limited understanding of the myriad of ocean processes, there is significant uncertainty.
We develop a Bayesian model learning methodology that allows handling in the space of candidate models and discovery of new models.
arXiv Detail & Related papers (2022-11-12T17:49:18Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEM acknowledges a priori model misspecification, by embedding forcing within the governing equations.
The method reconstructs the observed data-generating processes with minimal loss of information.
This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix.
arXiv Detail & Related papers (2021-09-10T09:51:43Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.