Finding the Underlying Viscoelastic Constitutive Equation via Universal Differential Equations and Differentiable Physics
- URL: http://arxiv.org/abs/2501.00556v1
- Date: Tue, 31 Dec 2024 17:34:29 GMT
- Title: Finding the Underlying Viscoelastic Constitutive Equation via Universal Differential Equations and Differentiable Physics
- Authors: Elias C. Rodrigues, Roney L. Thompson, Dário A. B. Oliveira, Roberto F. Ausas,
- Abstract summary: This research employs Universal Differential Equations (UDEs) alongside differentiable physics to viscoelastic fluids.
This study focuses on analyzing four viscoelastic models: Upper Convected Maxwell (UCM), Johnson-Segalman, Giesekus, and Exponential Phan-Thien-Tanner (ePTT)
- Score: 1.03121181235382
- License:
- Abstract: This research employs Universal Differential Equations (UDEs) alongside differentiable physics to model viscoelastic fluids, merging conventional differential equations, neural networks and numerical methods to reconstruct missing terms in constitutive models. This study focuses on analyzing four viscoelastic models: Upper Convected Maxwell (UCM), Johnson-Segalman, Giesekus, and Exponential Phan-Thien-Tanner (ePTT), through the use of synthetic datasets. The methodology was tested across different experimental conditions, including oscillatory and startup flows. While the UDE framework effectively predicts shear and normal stresses for most models, it demonstrates some limitations when applied to the ePTT model. The findings underscore the potential of UDEs in fluid mechanics while identifying critical areas for methodological improvement. Also, a model distillation approach was employed to extract simplified models from complex ones, emphasizing the versatility and robustness of UDEs in rheological modeling.
Related papers
- PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics [3.770825791788951]
We propose a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems.
These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow.
arXiv Detail & Related papers (2024-09-15T18:20:15Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Neural Differential Algebraic Equations [6.100037457394823]
We present Neural Differential-Algebraic Equations (NDAEs) suitable for data-driven modeling of Differential-Algebraic Equations (DAEs)
We show that the proposed NDAEs abstraction is suitable for relevant system-theoretic data-driven modeling tasks.
arXiv Detail & Related papers (2024-03-19T17:43:57Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
We discuss an approach using the differentiable physics paradigm that combines known physics with machine learning to develop closure models for turbulence problems.
We train a series of models that incorporate varying degrees of physical assumptions on an a posteriori loss function to test the efficacy of models.
We find that constraining models with inductive biases in the form of partial differential equations that contain known physics or existing closure approaches produces highly data-efficient, accurate, and generalizable models.
arXiv Detail & Related papers (2022-09-23T14:38:01Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.