Credit Risk Identification in Supply Chains Using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2501.10348v3
- Date: Fri, 24 Jan 2025 02:14:53 GMT
- Title: Credit Risk Identification in Supply Chains Using Generative Adversarial Networks
- Authors: Zizhou Zhang, Xinshi Li, Yu Cheng, Zhenrui Chen, Qianying Liu,
- Abstract summary: This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains.
GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets.
By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data.
- Score: 11.125130091872046
- License:
- Abstract: Credit risk management within supply chains has emerged as a critical research area due to its significant implications for operational stability and financial sustainability. The intricate interdependencies among supply chain participants mean that credit risks can propagate across networks, with impacts varying by industry. This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains. GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets. By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data. The research focuses on three representative industries-manufacturing (steel), distribution (pharmaceuticals), and services (e-commerce) to assess industry-specific credit risk contagion. Experimental results demonstrate that the GAN-based model outperforms traditional methods, including logistic regression, decision trees, and neural networks, achieving superior accuracy, recall, and F1 scores. The findings underscore the potential of GANs in proactive risk management, offering robust tools for mitigating financial disruptions in supply chains. Future research could expand the model by incorporating external market factors and supplier relationships to further enhance predictive capabilities. Keywords- Generative Adversarial Networks (GANs); Supply Chain Risk; Credit Risk Identification; Machine Learning; Data Augmentation
Related papers
- Enhancing Supply Chain Visibility with Generative AI: An Exploratory Case Study on Relationship Prediction in Knowledge Graphs [52.79646338275159]
Relationship prediction aims to increase the visibility of supply chains using data-driven techniques.
Existing methods have been successful for predicting relationships but struggle to extract the context in which these relationships are embedded.
Lack of context prevents practitioners from distinguishing transactional relations from established supply chain relations.
arXiv Detail & Related papers (2024-12-04T15:19:01Z) - Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - What if? Causal Machine Learning in Supply Chain Risk Management [47.56698850802985]
We propose and evaluate the use of causal machine learning for developing supply chain risk intervention models.
Our findings highlight that causal machine learning enhances decision-making processes by identifying changes that can be achieved under different supply chain interventions.
arXiv Detail & Related papers (2024-08-24T11:30:25Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based
Supply Chain Risk Assessment [3.439495194421287]
We propose a hierarchical knowledge transferable graph neural network-based (HKTGNN) supply chain risk assessment model.
We embed the supply chain network corresponding to individual goods in the supply chain using the graph embedding module.
Our model outperforms in experiments on a real-world supply chain dataset.
arXiv Detail & Related papers (2023-11-07T00:54:04Z) - Will bots take over the supply chain? Revisiting Agent-based supply
chain automation [71.77396882936951]
Agent-based supply chains have been proposed since early 2000; industrial uptake has been lagging.
We find that agent-based technology has matured, and other supporting technologies that are penetrating supply chains are filling in gaps.
For example, the ubiquity of IoT technology helps agents "sense" the state of affairs in a supply chain and opens up new possibilities for automation.
arXiv Detail & Related papers (2021-09-03T18:44:26Z) - Data Considerations in Graph Representation Learning for Supply Chain
Networks [64.72135325074963]
We present a graph representation learning approach to uncover hidden dependency links.
We demonstrate that our representation facilitates state-of-the-art performance on link prediction of a global automotive supply chain network.
arXiv Detail & Related papers (2021-07-22T12:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.