Graph Dimension Attention Networks for Enterprise Credit Assessment
- URL: http://arxiv.org/abs/2407.11615v1
- Date: Tue, 16 Jul 2024 11:24:28 GMT
- Title: Graph Dimension Attention Networks for Enterprise Credit Assessment
- Authors: Shaopeng Wei, Beni Egressy, Xingyan Chen, Yu Zhao, Fuzhen Zhuang, Roger Wattenhofer, Gang Kou,
- Abstract summary: We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
- Score: 40.87056211723355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise credit assessment is critical for evaluating financial risk, and Graph Neural Networks (GNNs), with their advanced capability to model inter-entity relationships, are a natural tool to get a deeper understanding of these financial networks. However, existing GNN-based methodologies predominantly emphasize entity-level attention mechanisms for contagion risk aggregation, often overlooking the heterogeneous importance of different feature dimensions, thus falling short in adequately modeling credit risk levels. To address this issue, we propose a novel architecture named Graph Dimension Attention Network (GDAN), which incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics. Furthermore, we explore the interpretability of the GNN-based method in financial scenarios and propose a simple but effective data-centric explainer for GDAN, called GDAN-DistShift. DistShift provides edge-level interpretability by quantifying distribution shifts during the message-passing process. Moreover, we collected a real-world, multi-source Enterprise Credit Assessment Dataset (ECAD) and have made it accessible to the research community since high-quality datasets are lacking in this field. Extensive experiments conducted on ECAD demonstrate the effectiveness of our methods. In addition, we ran GDAN on the well-known datasets SMEsD and DBLP, also with excellent results.
Related papers
- Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Review of Digital Asset Development with Graph Neural Network Unlearning [0.0]
This paper investigates the critical role of Graph Neural Networks (GNNs) in the management of digital assets.
We introduce innovative unlearning techniques specifically tailored to GNN architectures.
We highlight their applicability in various use cases, including fraud detection, risk assessment, token relationship prediction, and decentralized governance.
arXiv Detail & Related papers (2024-09-27T05:31:04Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection.
It combines the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks.
A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity.
arXiv Detail & Related papers (2024-07-09T03:59:06Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
Privacy and OOD Challenges [75.37448213291668]
This paper systematically reviews existing Graph Neural Networks (GNNs)
We first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models.
arXiv Detail & Related papers (2024-03-07T13:10:37Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Heterogeneous Information Network based Default Analysis on Banking
Micro and Small Enterprise Users [18.32345474014549]
We consider a graph of banking data, and propose a novel HIDAM model for the purpose.
To enhance feature representation of MSEs, we extract interactive information through meta-paths and fully exploit path information.
Experimental results verify that HIDAM outperforms state-of-the-art competitors on real-world banking data.
arXiv Detail & Related papers (2022-04-24T11:26:12Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.