Purcell-Enhanced, Directional Light-Matter Interaction in a Waveguide-Coupled Nanocavity
- URL: http://arxiv.org/abs/2501.10351v1
- Date: Fri, 17 Jan 2025 18:47:00 GMT
- Title: Purcell-Enhanced, Directional Light-Matter Interaction in a Waveguide-Coupled Nanocavity
- Authors: Nicholas J. Martin, Dominic Hallett, Mateusz Duda, Luke Hallacy, Elena Callus, Luke Brunswick, René Dost, Edmund Clarke, Pallavi K. Patil, Pieter Kok, Maurice S. Skolnick, Luke R. Wilson,
- Abstract summary: We demonstrate electrically, spin-dependent, directional coupling of single photons by embedding quantum dots (QDs) in a waveguide-coupled nanocavity.
The nanocavity enables wide-range electrical tuning of the emitter's directional contrast.
In combination, these characteristics make this cavity-waveguide approach promising for use as a building block in directional nanophotonic circuits.
- Score: 0.0
- License:
- Abstract: We demonstrate electrically tunable, spin-dependent, directional coupling of single photons by embedding quantum dots (QDs) in a waveguide-coupled nanocavity. The directional behavior arises from direction-dependent interference between two cavity modes when coupled to the device waveguides. The small mode volume cavity enables simultaneous Purcell enhancement (${10.8\pm0.7}$) and peak directional contrast (${88\pm1\%}$), exceeding current state-of-the-art waveguide-only systems. We also present a scattering matrix model for the transmission through this structure, alongside a quantum trajectory-based model for predicting the system's directionality, which we use to explain the observed asymmetry in directional contrast seen in QD devices. Furthermore, the nanocavity enables wide-range electrical tuning of the emitter's directional contrast. We present results showing precise tuning of a QD emission line from a directional contrast of ${2\%}$ to ${96\%}$. In combination, these characteristics make this cavity-waveguide approach promising for use as a building block in directional nanophotonic circuits.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Efficient single-photon directional transfer between waveguides via two giant atoms [1.4778851751964937]
We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system.
Our results indicate that resonant photons can be completely transferred between the two waveguides.
This study has potential applications in quantum networks and integrated photonic circuits.
arXiv Detail & Related papers (2024-07-09T07:49:16Z) - Qubit-controlled directional edge states in waveguide QED [0.0]
We show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on the energy of the qubit.
In contrast to previous proposals that have either shown imperfect chirality or fixed directionality, our waveguide QED scheme achieves both perfect chirality and the capability to switch the directionality on demand with just one tunable element.
arXiv Detail & Related papers (2022-11-30T20:29:52Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Quantum coherent feedback control with photons [2.83114308547142]
We study two-photon dynamics induced by the coherent feedback control of a cavity quantum electrodynamics (cavity-QED) system coupled to a waveguide.
We analyze the dynamics of two-photon processes in this coherent feedback network in two scenarios.
arXiv Detail & Related papers (2022-06-03T08:18:16Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Engineering strong chiral light-matter interactions in a
waveguide-coupled nanocavity [0.0]
In the solid state, quantum emitters commonly possess circularly polarised optical transitions with spin-dependent handedness.
We demonstrate that spin-dependent chiral coupling can be realised by embedding such an emitter in a waveguide-coupled nanocavity.
arXiv Detail & Related papers (2021-08-03T12:55:49Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Collective photon routing improvement in a dissipative quantum emitter
chain strongly coupled to a chiral waveguide QED ladder [0.0]
We show that the collective effects arising from the strong DDI protect the routing scheme from spontaneous emission loss.
We demonstrate that the router operation can be improved from $58%$ to $95%$ in a typical dissipative chiral light-matter interface.
arXiv Detail & Related papers (2020-06-20T07:07:17Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.