Automated Detection of Epileptic Spikes and Seizures Incorporating a Novel Spatial Clustering Prior
- URL: http://arxiv.org/abs/2501.10404v1
- Date: Sun, 05 Jan 2025 02:06:13 GMT
- Title: Automated Detection of Epileptic Spikes and Seizures Incorporating a Novel Spatial Clustering Prior
- Authors: Hanyang Dong, Shurong Sheng, Xiongfei Wang, Jiahong Gao, Yi Sun, Wanli Yang, Kuntao Xiao, Pengfei Teng, Guoming Luan, Zhao Lv,
- Abstract summary: We introduce a paradigm that first clusters MEG channels based on their sensor's spatial position.
Next, a novel convolutional input module is designed to integrate the spatial clustering and temporal changes of the signals.
Our method achieves an F1 score of 94.73% on a large real-world MEG dataset Sanbo-CMR collected from two centers, outperforming state-of-the-art approaches by 1.85%.
- Score: 4.432163893362497
- License:
- Abstract: A Magnetoencephalography (MEG) time-series recording consists of multi-channel signals collected by superconducting sensors, with each signal's intensity reflecting magnetic field changes over time at the sensor location. Automating epileptic MEG spike detection significantly reduces manual assessment time and effort, yielding substantial clinical benefits. Existing research addresses MEG spike detection by encoding neural network inputs with signals from all channel within a time segment, followed by classification. However, these methods overlook simultaneous spiking occurred from nearby sensors. We introduce a simple yet effective paradigm that first clusters MEG channels based on their sensor's spatial position. Next, a novel convolutional input module is designed to integrate the spatial clustering and temporal changes of the signals. This module is fed into a custom MEEG-ResNet3D developed by the authors, which learns to extract relevant features and classify the input as a spike clip or not. Our method achieves an F1 score of 94.73% on a large real-world MEG dataset Sanbo-CMR collected from two centers, outperforming state-of-the-art approaches by 1.85%. Moreover, it demonstrates efficacy and stability in the Electroencephalographic (EEG) seizure detection task, yielding an improved weighted F1 score of 1.4% compared to current state-of-the-art techniques evaluated on TUSZ, whch is the largest EEG seizure dataset.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - Machine Learning-based sEMG Signal Classification for Hand Gesture Recognition [3.9440964696313485]
EMG-based hand gesture recognition uses electromyographic(EMG) signals to interpret and classify hand movements.
This paper aims to benchmark the performance of EMG-based hand gesture recognition using novel feature extraction methods.
arXiv Detail & Related papers (2024-11-23T21:29:51Z) - FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) is a novel approach using adaptive temporal-lateral attention scaling.
FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps.
arXiv Detail & Related papers (2024-09-19T04:22:40Z) - DTP-Net: Learning to Reconstruct EEG signals in Time-Frequency Domain by
Multi-scale Feature Reuse [7.646218090238708]
We present a fully convolutional neural architecture, called DTP-Net, which consists of a Densely Connected Temporal Pyramid (DTP) sandwiched between a pair of learnable time-frequency transformations.
EEG signals are easily corrupted by various artifacts, making artifact removal crucial for improving signal quality in scenarios such as disease diagnosis and brain-computer interface (BCI)
Extensive experiments conducted on two public semi-simulated datasets demonstrate the effective artifact removal performance of DTP-Net.
arXiv Detail & Related papers (2023-11-27T11:09:39Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An electronic neuromorphic system for real-time detection of High
Frequency Oscillations (HFOs) in intracranial EEG [0.0]
We present a neuromorphic system that combines a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO)
We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively)
This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and
arXiv Detail & Related papers (2020-09-23T16:40:44Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - DeepBeat: A multi-task deep learning approach to assess signal quality
and arrhythmia detection in wearable devices [0.0]
We develop a multi-task deep learning method to assess signal quality and arrhythmia event detection in wearable photoplethysmography devices for real-time detection of atrial fibrillation (AF)
We train our algorithm on over one million simulated unlabeled physiological signals and fine-tune on a curated dataset of over 500K labeled signals from over 100 individuals from 3 different wearable devices.
We show that two-stage training can help address the unbalanced data problem common to biomedical applications where large well-annotated datasets are scarce.
arXiv Detail & Related papers (2020-01-01T07:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.