論文の概要: Delay Neural Networks (DeNN) for exploiting temporal information in event-based datasets
- arxiv url: http://arxiv.org/abs/2501.10425v1
- Date: Fri, 10 Jan 2025 14:58:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 02:40:08.862350
- Title: Delay Neural Networks (DeNN) for exploiting temporal information in event-based datasets
- Title(参考訳): イベントベースデータセットにおける時間情報活用のための遅延ニューラルネットワーク(DeNN)
- Authors: Alban Gattepaille, Alexandre Muzy,
- Abstract要約: 遅延ニューラルネットワーク(DeNN)は、前方と後方の両方でスパイクの正確な時間的情報を明示的に使用するように設計されている。
特に時間情報が重要であるデータセットでは、優れたパフォーマンスが得られます。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: In Deep Neural Networks (DNN) and Spiking Neural Networks (SNN), the information of a neuron is computed based on the sum of the amplitudes (weights) of the electrical potentials received in input from other neurons. We propose here a new class of neural networks, namely Delay Neural Networks (DeNN), where the information of a neuron is computed based on the sum of its input synaptic delays and on the spike times of the electrical potentials received from other neurons. This way, DeNN are designed to explicitly use exact continuous temporal information of spikes in both forward and backward passes, without approximation. (Deep) DeNN are applied here to images and event-based (audio and visual) data sets. Good performances are obtained, especially for datasets where temporal information is important, with much less parameters and less energy than other models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)およびスパイキングニューラルネットワーク(SNN)では、他のニューロンから入力された電位の振幅(重み)の和に基づいてニューロンの情報を算出する。
本稿では、入力シナプス遅延の総和と、他のニューロンから受信された電位のスパイク時間に基づいてニューロンの情報を算出する、遅延ニューラルネットワーク(DeNN)という新しいタイプのニューラルネットワークを提案する。
このようにして、DeNNは、近似なしで、前方と後方の両方でスパイクの正確な時間的情報を明示的に使用するように設計されている。
(詳細)
DeNNは、画像とイベントベースの(オーディオとビジュアル)データセットに適用される。
優れたパフォーマンスが得られ、特に時間的情報が重要であるデータセットでは、パラメータがはるかに少なく、他のモデルよりもエネルギーが少ない。
関連論文リスト
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
ニューラルネットワーク(SNN)は、ニューロンを利用して脳の情報処理機構をキャプチャする。
本研究では、複雑な力学、すなわちパルス結合型ニューラルネットワーク(PCNN)を用いた、より生物学的に実証可能なニューラルモデルを活用する。
我々は、SNNでよく使われるLIFニューロンをPCNNニューロンに置き換えることで、ディープパルス結合ニューラルネットワーク(DPCNN)を構築する。
論文 参考訳(メタデータ) (2023-12-24T08:26:00Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
スパイキングニューラルネットワーク(SNN)は、固有の時間処理とスパイクベースの計算のため、人工知能ニューラルネットワーク(ANN)と区別する。
スパイクニューロンを用いたデータ処理は、他の2つの生物学的にインスピレーションを受けたニューロンの特徴と接続重みを協調学習することで向上できることを示す。
論文 参考訳(メタデータ) (2023-09-12T09:13:26Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - Deep Neural Networks using a Single Neuron: Folded-in-Time Architecture
using Feedback-Modulated Delay Loops [0.0]
本稿では、任意の大きさのディープニューラルネットワークを、複数の時間遅延フィードバックループを持つ単一ニューロンに折り畳む方法を提案する。
本発明の単一ニューロン深部ニューラルネットワークは、単一の非線形性のみを含み、フィードバック信号の調整を適切に調整する。
Folded-in-time DNN(Fit-DNN)と呼ばれる新しい手法は、ベンチマークタスクのセットで有望な性能を示す。
論文 参考訳(メタデータ) (2020-11-19T21:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。