論文の概要: Improved IR-based Bug Localization with Intelligent Relevance Feedback
- arxiv url: http://arxiv.org/abs/2501.10542v1
- Date: Fri, 17 Jan 2025 20:29:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:50.867454
- Title: Improved IR-based Bug Localization with Intelligent Relevance Feedback
- Title(参考訳): Intelligent Relevance FeedbackによるIRベースのバグローカライゼーションの改善
- Authors: Asif Mohammed Samir, Mohammad Masudur Rahman,
- Abstract要約: ソフトウェアバグは、開発とメンテナンスにおいて重大な課題となり、実践者は、バグを扱うのに約50%の時間を費やします。
既存の多くのテクニックでは、バグレポートとソースコードの間のテキストおよび意味的関連性を使用して、報告されたバグをローカライズするために、Information Retrieval (IR)を採用している。
本稿では,バグレポートとコードの関連性を評価することによって,コンテキストギャップに対処する新たなバグローカライゼーション手法であるBRaInを提案する。
- 参考スコア(独自算出の注目度): 2.9312156642007294
- License:
- Abstract: Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.
- Abstract(参考訳): ソフトウェアバグは、開発とメンテナンスにおいて重大な課題となり、実践者は、バグを扱うのに約50%の時間を費やします。
既存の多くのテクニックでは、バグレポートとソースコードの間のテキストおよび意味的関連性を使用して、報告されたバグをローカライズするために、Information Retrieval (IR)を採用している。
しかし、彼らはしばしば、バグレポートとコンテキスト内での理解を必要とするコードの間に重要なギャップを埋めるのに苦労しています。
本稿では,バグレポートとLLM(Large Language Models)によるコードとの関連性を評価することで,コンテキストギャップに対処する新しいバグローカライゼーション手法であるBRaInを提案する。
その後、LCMのフィードバック(すなわちIntelligent Relevance Feedback)を活用して、クエリを書き換え、ソースドキュメントを再ランクし、バグのローカライゼーションを改善する。
ベンチマークデータセットであるBench4BLと3つのパフォーマンス指標を用いてBRaInを評価し,文献の6つのベースライン技術と比較した。
実験の結果, BRaInはMAP, MRR, HIT@Kでそれぞれ87.6%, 89.5%, 48.8%, ベースラインよりも優れていた。
さらに、対応するバグレポートの質が悪いため、ベースラインテクニックによってローカライズできないバグの約52%をローカライズすることができる。
コンテキストギャップに対処し、Intelligent Relevance Feedbackを導入することで、BRaInは理論だけでなくIRベースのバグローカライゼーションも改善する。
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - BLAZE: Cross-Language and Cross-Project Bug Localization via Dynamic Chunking and Hard Example Learning [1.9854146581797698]
BLAZEは動的チャンキングとハードサンプル学習を採用するアプローチである。
プロジェクト横断と言語横断のバグローカライゼーションを強化するために、難しいバグケースを使用してGPTベースのモデルを微調整する。
BLAZEは、トップ1の精度で120%、平均平均精度(MAP)で144%、平均相互ランク(MRR)で100%上昇する。
論文 参考訳(メタデータ) (2024-07-24T20:44:36Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - On Using GUI Interaction Data to Improve Text Retrieval-based Bug
Localization [10.717184444794505]
エンドユーザー向けアプリケーションでは、バグレポート内の情報とGUIの情報とを結びつけることにより、既存のバグローカライゼーション技術を改善することができるという仮説を考察する。
当社は,Androidアプリの完全ローカライズおよび再現可能な真のバグに関する現在の最大のデータセットを,対応するバグレポートとともに公開しています。
論文 参考訳(メタデータ) (2023-10-12T07:14:22Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
新たな検索型パッチ生成フレームワーク(RAP-Gen)を提案する。
RAP-Gen 以前のバグ修正ペアのリストから取得した関連する修正パターンを明示的に活用する。
RAP-GenをJavaScriptのTFixベンチマークとJavaのCode RefinementとDefects4Jベンチマークの2つのプログラミング言語で評価する。
論文 参考訳(メタデータ) (2023-09-12T08:52:56Z) - A Comparative Study of Text Embedding Models for Semantic Text
Similarity in Bug Reports [0.0]
既存のデータベースから同様のバグレポートを取得することは、バグを解決するのに必要な時間と労力を削減するのに役立つ。
我々はTF-IDF(Baseline)、FastText、Gensim、BERT、ADAなどの埋め込みモデルについて検討した。
本研究は, 類似のバグレポートを検索するための埋め込み手法の有効性について考察し, 適切なバグレポートを選択することの影響を明らかにする。
論文 参考訳(メタデータ) (2023-08-17T21:36:56Z) - Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation [55.92852268168816]
BLEUやchrFのようなN-gramマッチングに基づく評価指標は、自然言語生成(NLG)タスクで広く利用されている。
近年の研究では、これらのマッチングベースの指標と人間の評価との間には弱い相関関係が示されている。
本稿では,これらの指標と人的評価の整合性を高めるために,テキストマルチプル参照を利用することを提案する。
論文 参考訳(メタデータ) (2023-08-06T14:49:26Z) - WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised
Learning [37.09621161662761]
本稿では,バグローカライゼーションモデルをトレーニングするためのWEakly supervised bug LocaLization (WELL) 手法を提案する。
CodeBERTはバギーまたはノーのバイナリラベル付きデータに基づいて微調整されるため、WELLはバグのローカライゼーションを弱教師付きで解決することができる。
論文 参考訳(メタデータ) (2023-05-27T06:34:26Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - The Forgotten Role of Search Queries in IR-based Bug Localization: An
Empirical Study [17.809196793565224]
本稿では、IRベースのバグローカライゼーションにおける最先端のクエリ選択手法について批判的に検討する。
遺伝的アルゴリズムに基づく手法を用いて,2,320のバグレポートから最適に近い検索クエリを構築する。
動作可能なインサイトの適用により,非最適クエリのパフォーマンスが27%~34%向上したことを示す。
論文 参考訳(メタデータ) (2021-08-11T17:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。