An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning
- URL: http://arxiv.org/abs/2501.10698v1
- Date: Sat, 18 Jan 2025 08:37:33 GMT
- Title: An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning
- Authors: Arthicha Srisuchinnawong, Poramate Manoonpong,
- Abstract summary: Sequential Motion Executor (SME) is a three-layer interpretable neural network.
Adaptable Gradient-weighting Online Learning (AGOL) algorithm prioritizes the update of the parameters with high relevance score.
SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot.
- Score: 7.6119527195998
- License:
- Abstract: Robot locomotion learning using reinforcement learning suffers from training sample inefficiency and exhibits the non-understandable/black-box nature. Thus, this work presents a novel SME-AGOL to address such problems. Firstly, Sequential Motion Executor (SME) is a three-layer interpretable neural network, where the first produces the sequentially propagating hidden states, the second constructs the corresponding triangular bases with minor non-neighbor interference, and the third maps the bases to the motor commands. Secondly, the Adaptable Gradient-weighting Online Learning (AGOL) algorithm prioritizes the update of the parameters with high relevance score, allowing the learning to focus more on the highly relevant ones. Thus, these two components lead to an analyzable framework, where each sequential hidden state/basis represents the learned key poses/robot configuration. Compared to state-of-the-art methods, the SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot, while taking merely 10 minutes of learning time from scratch on a physical hexapod robot. Taken together, this work not only proposes the SME-AGOL for sample efficient and understandable locomotion learning but also emphasizes the potential exploitation of interpretability for improving sample efficiency and learning performance.
Related papers
- Sample Efficient Robot Learning in Supervised Effect Prediction Tasks [0.0]
In this work, we develop a novel AL framework geared towards robotics regression tasks, such as action-effect prediction and, more generally, for world model learning, which we call MUSEL.
MUSEL aims to extract model uncertainty from the total uncertainty estimate given by a suitable learning engine by making use of earning progress and input diversity and use it to improve sample efficiency beyond the state-of-the-art action-effect prediction methods.
The efficacy of MUSEL is demonstrated by comparing its performance to standard methods used in robot action-effect learning.
arXiv Detail & Related papers (2024-12-03T09:48:28Z) - Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move [8.445514342786579]
This study introduces three fully convolutional neural network (FCN) models to predict static grasp primitive, dynamic grasp primitive, and residual moving velocity error from visual inputs.
The proposed method achieved the highest grasping accuracy and pick-and-place efficiency.
arXiv Detail & Related papers (2024-11-15T02:59:16Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
We propose an efficient Adaptive HOI Detector with Concept-guided Memory (ADA-CM)
ADA-CM has two operating modes. The first mode makes it tunable without learning new parameters in a training-free paradigm.
Our proposed method achieves competitive results with state-of-the-art on the HICO-DET and V-COCO datasets with much less training time.
arXiv Detail & Related papers (2023-09-07T13:10:06Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
We propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimize for the L2 metric without the need of generating pairs.
We evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures.
arXiv Detail & Related papers (2023-06-01T12:53:10Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z) - Efficient Learning of Control Policies for Robust Quadruped Bounding
using Pretrained Neural Networks [15.09037992110481]
Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles.
The authors proposed an effective approach that can learn robust bounding gaits more efficiently.
The authors approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.
arXiv Detail & Related papers (2020-11-01T08:06:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.