Robust Local Polynomial Regression with Similarity Kernels
- URL: http://arxiv.org/abs/2501.10729v1
- Date: Sat, 18 Jan 2025 11:21:26 GMT
- Title: Robust Local Polynomial Regression with Similarity Kernels
- Authors: Yaniv Shulman,
- Abstract summary: Local Polynomial Regression (LPR) is a widely used nonparametric method for modeling complex relationships.
It estimates a regression function by fitting low-degree weights to localized subsets of the data, weighted by proximity.
Traditional LPR is sensitive to outliers and high-leverage points, which can significantly affect estimation accuracy.
This paper proposes a novel framework that incorporates both predictor and response variables in the weighting mechanism.
- Score: 0.0
- License:
- Abstract: Local Polynomial Regression (LPR) is a widely used nonparametric method for modeling complex relationships due to its flexibility and simplicity. It estimates a regression function by fitting low-degree polynomials to localized subsets of the data, weighted by proximity. However, traditional LPR is sensitive to outliers and high-leverage points, which can significantly affect estimation accuracy. This paper revisits the kernel function used to compute regression weights and proposes a novel framework that incorporates both predictor and response variables in the weighting mechanism. By introducing two positive definite kernels, the proposed method robustly estimates weights, mitigating the influence of outliers through localized density estimation. The method is implemented in Python and is publicly available at https://github.com/yaniv-shulman/rsklpr, demonstrating competitive performance in synthetic benchmark experiments. Compared to standard LPR, the proposed approach consistently improves robustness and accuracy, especially in heteroscedastic and noisy environments, without requiring multiple iterations. This advancement provides a promising extension to traditional LPR, opening new possibilities for robust regression applications.
Related papers
- RieszBoost: Gradient Boosting for Riesz Regression [49.737777802061984]
We propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form.
We show that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals.
arXiv Detail & Related papers (2025-01-08T23:04:32Z) - LASER: A new method for locally adaptive nonparametric regression [5.926203312586109]
We introduce textsfLASER (Locally Adaptive Smoothing Estimator for Regression), a computationally efficient locally adaptive nonparametric regression method.
We prove that it adapts (near-)optimally to the local H"older exponent of the underlying regression function textttsimultaneously at all points in its domain.
arXiv Detail & Related papers (2024-12-27T18:59:03Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic
Divergence [17.665255113864795]
We present a novel divergence-like metric which corresponds to the upper bound of the Kullback-Leibler divergence (KLD) of a relaxed categorical distribution.
We also propose a relaxed categorical analytic bound variational autoencoder (ReCAB-VAE) that successfully models both continuous and relaxed latent representations.
arXiv Detail & Related papers (2022-05-09T08:11:46Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.