論文の概要: Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
- arxiv url: http://arxiv.org/abs/2501.10736v2
- Date: Thu, 13 Mar 2025 14:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 19:21:14.432067
- Title: Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
- Title(参考訳): マルチスケール不確かさと教師間学習によるリモートセンシング画像の半教師付きセマンティックセマンティックセグメンテーション
- Authors: Shanwen Wang, Xin Sun, Changrui Chen, Danfeng Hong, Jungong Han,
- Abstract要約: 本稿では,RS画像セマンティックセグメンテーションタスクのための,新しい半教師付きマルチスケール不確かさとクロスTeacher-Student Attention(MUCA)モデルを提案する。
MUCAは、マルチスケールの不確実性整合正則化を導入することにより、ネットワークの異なる層における特徴写像間の整合性を制限する。
MUCAは学生ネットワークの誘導にクロス教師・学生の注意機構を使用し、学生ネットワークにより差別的な特徴表現を構築するよう誘導する。
- 参考スコア(独自算出の注目度): 59.19580789952102
- License:
- Abstract: Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
- Abstract(参考訳): 半教師付き学習は、労働集約的なピクセルレベルのラベリングの負担を軽減するために、リモートセンシング(RS)画像セグメンテーションに魅力的なソリューションを提供する。
しかし、RS画像は、リッチなマルチスケール機能やクラス間の高い類似性など、ユニークな課題を生んでいる。
これらの問題に対処するために,RS画像セマンティックセグメンテーションタスクのための,新しい半教師付きマルチスケール不確かさとクロスTeacher-Student Attention(MUCA)モデルを提案する。
具体的には、MUCAは、マルチスケールの不確実性整合正則化を導入することにより、ネットワークの各層における特徴写像間の整合性を制限する。
ラベルのないデータに対する半教師付きアルゴリズムのマルチスケール学習能力を改善する。
さらに、MUCAは学生ネットワークの指導にクロス教師・学生の注意機構を利用し、教師ネットワークからの補完的な特徴を通してより差別的な特徴表現を構築するよう学生ネットワークに誘導する。
この設計は、弱い強化(WAとSA)を効果的に統合し、セグメンテーション性能をさらに向上させる。
本モデルの有効性を検証するため,ISPRS-PotsdamおよびLoveDAデータセットについて広範な実験を行った。
実験結果から, 最先端の半教師付き手法よりも本手法の方が優れていることが示された。
特に,本モデルは非常に類似した物体の識別に優れており,半教師付きRS画像分割タスクを前進させる可能性を示している。
関連論文リスト
- ECAFormer: Low-light Image Enhancement using Cross Attention [11.554554006307836]
低照度画像強調(LLIE)はコンピュータビジョンにおいて重要である。
我々はクロスアテンショントランス(ECAFormer)による階層的相互強化を設計する。
我々は,ECAFormerが複数のベンチマークで競合性能に到達し,PSNRを最適化法よりも3%近く改善したことを示す。
論文 参考訳(メタデータ) (2024-06-19T07:21:31Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - A Dual-branch Self-supervised Representation Learning Framework for
Tumour Segmentation in Whole Slide Images [12.961686610789416]
自己教師付き学習(SSL)は、スライドイメージ全体のアノテーションオーバーヘッドを低減する代替ソリューションとして登場した。
これらのSSLアプローチは、識別画像の特徴を学習する際の性能を制限するマルチレゾリューションWSIを扱うために設計されていない。
マルチ解像度WSIから画像特徴を効果的に学習できるDSF-WSI(Dual-branch SSL Framework for WSI tumour segmentation)を提案する。
論文 参考訳(メタデータ) (2023-03-20T10:57:28Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - Learning Discriminative Representations for Multi-Label Image
Recognition [13.13795708478267]
マルチラベルタスクにおける識別的特徴を学習するための統合深層ネットワークを提案する。
ネットワーク全体を正規化することで、よく知られたResNet-101の適用性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-07-23T12:10:46Z) - Multi-task Over-the-Air Federated Learning: A Non-Orthogonal
Transmission Approach [52.85647632037537]
複数の学習タスクがエッジサーバ(ES)の協調の下でデータ収集および学習モデルのためのエッジデバイスを共有するマルチタスク・オーバーテア・フェデレーション・ラーニング(MOAFL)フレームワークを提案する。
収束解析と数値計算の両方の結果から,MOAFLフレームワークは学習性能を著しく低下させることなく,複数のタスクのアップリンク帯域幅の消費を大幅に削減できることが示された。
論文 参考訳(メタデータ) (2021-06-27T13:09:32Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-SOD(Co-saliency Detection)は、一般的な唾液前景を関連画像のグループに分割することを目的としている。
本稿では,人間の行動にインスパイアされた,勾配誘導型共分散検出法を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。