Fixed Point Computation: Beating Brute Force with Smoothed Analysis
- URL: http://arxiv.org/abs/2501.10884v1
- Date: Sat, 18 Jan 2025 21:32:26 GMT
- Title: Fixed Point Computation: Beating Brute Force with Smoothed Analysis
- Authors: Idan Attias, Yuval Dagan, Constantinos Daskalakis, Rui Yao, Manolis Zampetakis,
- Abstract summary: We propose a new algorithm that finds an $varepsilon$-approximate fixed point of a smooth function from the $n$-dimensional $ell$ unit ball to itself.
The algorithm's runtime is bounded by $eO(n)/varepsilon$, under the smoothed-analysis framework.
- Score: 28.978340288565118
- License:
- Abstract: We propose a new algorithm that finds an $\varepsilon$-approximate fixed point of a smooth function from the $n$-dimensional $\ell_2$ unit ball to itself. We use the general framework of finding approximate solutions to a variational inequality, a problem that subsumes fixed point computation and the computation of a Nash Equilibrium. The algorithm's runtime is bounded by $e^{O(n)}/\varepsilon$, under the smoothed-analysis framework. This is the first known algorithm in such a generality whose runtime is faster than $(1/\varepsilon)^{O(n)}$, which is a time that suffices for an exhaustive search. We complement this result with a lower bound of $e^{\Omega(n)}$ on the query complexity for finding an $O(1)$-approximate fixed point on the unit ball, which holds even in the smoothed-analysis model, yet without the assumption that the function is smooth. Existing lower bounds are only known for the hypercube, and adapting them to the ball does not give non-trivial results even for finding $O(1/\sqrt{n})$-approximate fixed points.
Related papers
- On the Complexity of First-Order Methods in Stochastic Bilevel
Optimization [9.649991673557167]
We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex.
Existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them.
We propose a simple first-order method that converges to an $epsilon$ stationary point using $O(epsilon-6), O(epsilon-4)$ access to first-order $y*$-aware oracles.
arXiv Detail & Related papers (2024-02-11T04:26:35Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Near-Optimal Lower Bounds For Convex Optimization For All Orders of
Smoothness [26.71898403195793]
We study the complexity of optimizing highly smooth convex functions.
For a positive integer $p$, we want to find an $epsilon$-approximate minimum of a convex function $f$.
We prove a new lower bound that matches this bound (up to log factors), and holds not only for randomized algorithms, but also for quantum algorithms.
arXiv Detail & Related papers (2021-12-02T10:51:43Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.