Near-Optimal Lower Bounds For Convex Optimization For All Orders of
Smoothness
- URL: http://arxiv.org/abs/2112.01118v1
- Date: Thu, 2 Dec 2021 10:51:43 GMT
- Title: Near-Optimal Lower Bounds For Convex Optimization For All Orders of
Smoothness
- Authors: Ankit Garg, Robin Kothari, Praneeth Netrapalli and Suhail Sherif
- Abstract summary: We study the complexity of optimizing highly smooth convex functions.
For a positive integer $p$, we want to find an $epsilon$-approximate minimum of a convex function $f$.
We prove a new lower bound that matches this bound (up to log factors), and holds not only for randomized algorithms, but also for quantum algorithms.
- Score: 26.71898403195793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the complexity of optimizing highly smooth convex functions. For a
positive integer $p$, we want to find an $\epsilon$-approximate minimum of a
convex function $f$, given oracle access to the function and its first $p$
derivatives, assuming that the $p$th derivative of $f$ is Lipschitz.
Recently, three independent research groups (Jiang et al., PLMR 2019;
Gasnikov et al., PLMR 2019; Bubeck et al., PLMR 2019) developed a new algorithm
that solves this problem with $\tilde{O}(1/\epsilon^{\frac{2}{3p+1}})$ oracle
calls for constant $p$. This is known to be optimal (up to log factors) for
deterministic algorithms, but known lower bounds for randomized algorithms do
not match this bound. We prove a new lower bound that matches this bound (up to
log factors), and holds not only for randomized algorithms, but also for
quantum algorithms.
Related papers
- Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss [16.91814406135565]
We conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions.
We prove that quantum algorithms must take $tildeOmega(sqrtNepsilon-2/3)$ queries to a first order quantum oracle.
arXiv Detail & Related papers (2024-02-20T06:23:36Z) - Adaptive approximation of monotone functions [0.0]
We prove that GreedyBox achieves an optimal sample complexity for any function $f$, up to logarithmic factors.
Perhaps as expected, the $Lp(mu)$ error of GreedyBox decreases much faster for piecewise-$C2$ functions than predicted by the algorithm.
arXiv Detail & Related papers (2023-09-14T08:56:31Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
We study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems.
The reason for this is that these algorithms require performing a complex binary procedure, which makes them neither optimal nor practical.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft(epsilon-2/(p+1)right) $pth order oracle complexity.
arXiv Detail & Related papers (2022-05-19T16:04:40Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.