Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments
- URL: http://arxiv.org/abs/2501.10893v1
- Date: Sat, 18 Jan 2025 22:34:41 GMT
- Title: Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments
- Authors: Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, Sercan Ö. Arık,
- Abstract summary: Learn-by-interact is a data-centric framework to adapt large language models (LLMs) to any given environments without human annotations.
We assess the quality of our synthetic data by using them in both training-based scenarios and training-free in-context learning (ICL)
Experiments on SWE-bench, WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and desktop environments show the effectiveness of Learn-by-interact.
- Score: 33.83610929282721
- License:
- Abstract: Autonomous agents powered by large language models (LLMs) have the potential to enhance human capabilities, assisting with digital tasks from sending emails to performing data analysis. The abilities of existing LLMs at such tasks are often hindered by the lack of high-quality agent data from the corresponding environments they interact with. We propose Learn-by-interact, a data-centric framework to adapt LLM agents to any given environments without human annotations. Learn-by-interact synthesizes trajectories of agent-environment interactions based on documentations, and constructs instructions by summarizing or abstracting the interaction histories, a process called backward construction. We assess the quality of our synthetic data by using them in both training-based scenarios and training-free in-context learning (ICL), where we craft innovative retrieval approaches optimized for agents. Extensive experiments on SWE-bench, WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and desktop environments show the effectiveness of Learn-by-interact in various downstream agentic tasks -- baseline results are improved by up to 12.2\% for ICL with Claude-3.5 and 19.5\% for training with Codestral-22B. We further demonstrate the critical role of backward construction, which provides up to 14.0\% improvement for training. Our ablation studies demonstrate the efficiency provided by our synthesized data in ICL and the superiority of our retrieval pipeline over alternative approaches like conventional retrieval-augmented generation (RAG). We expect that Learn-by-interact will serve as a foundation for agent data synthesis as LLMs are increasingly deployed at real-world environments.
Related papers
- Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
This paper introduces a benchmarking framework to assess large language models (LLMs)
It integrates generative agent simulation to evaluate performance on key dimensions: information extraction, context awareness, and adaptive engagement.
Results show that adaptive strategies improve data extraction accuracy, especially when handling ambiguous responses.
arXiv Detail & Related papers (2025-02-04T15:47:47Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests.
We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments.
We derive LOOP, a data- and memory-efficient variant of proximal policy optimization.
arXiv Detail & Related papers (2025-02-03T18:35:42Z) - Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data [7.603659241572307]
We propose a novel UCB-based training procedure combined with a dynamic usability metric.
Our proposed metric integrates low-level and high-level information from synthetic images and their corresponding real and synthetic datasets.
We show that our metric is an effective way to rank synthetic images based on their usability.
arXiv Detail & Related papers (2024-12-06T23:36:36Z) - Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
We investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning.
We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted.
Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.
arXiv Detail & Related papers (2024-10-29T17:55:00Z) - Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation [51.20656279478878]
MATRIX is a multi-agent simulator that automatically generates diverse text-based scenarios.
We introduce MATRIX-Gen for controllable and highly realistic data synthesis.
On AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta's Llama-3-8B-Instruct model.
arXiv Detail & Related papers (2024-10-18T08:01:39Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - Causal Reinforcement Learning using Observational and Interventional
Data [14.856472820492364]
Learning efficiently a causal model of the environment is a key challenge of model RL agents operating in POMDPs.
We consider a scenario where the learning agent has the ability to collect online experiences through direct interactions with the environment.
We then ask the following questions: can the online and offline experiences be safely combined for learning a causal model.
arXiv Detail & Related papers (2021-06-28T06:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.