Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data
- URL: http://arxiv.org/abs/2412.05466v1
- Date: Fri, 06 Dec 2024 23:36:36 GMT
- Title: Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data
- Authors: Abdulrahman Kerim, Leandro Soriano Marcolino, Erickson R. Nascimento, Richard Jiang,
- Abstract summary: We propose a novel UCB-based training procedure combined with a dynamic usability metric.
Our proposed metric integrates low-level and high-level information from synthetic images and their corresponding real and synthetic datasets.
We show that our metric is an effective way to rank synthetic images based on their usability.
- Score: 7.603659241572307
- License:
- Abstract: Supervised machine learning methods require large-scale training datasets to perform well in practice. Synthetic data has been showing great progress recently and has been used as a complement to real data. However, there is yet a great urge to assess the usability of synthetically generated data. To this end, we propose a novel UCB-based training procedure combined with a dynamic usability metric. Our proposed metric integrates low-level and high-level information from synthetic images and their corresponding real and synthetic datasets, surpassing existing traditional metrics. By utilizing a UCB-based dynamic approach ensures continual enhancement of model learning. Unlike other approaches, our method effectively adapts to changes in the machine learning model's state and considers the evolving utility of training samples during the training process. We show that our metric is an effective way to rank synthetic images based on their usability. Furthermore, we propose a new attribute-aware bandit pipeline for generating synthetic data by integrating a Large Language Model with Stable Diffusion. Quantitative results show that our approach can boost the performance of a wide range of supervised classifiers. Notably, we observed an improvement of up to 10% in classification accuracy compared to traditional approaches, demonstrating the effectiveness of our approach. Our source code, datasets, and additional materials are publically available at https://github.com/A-Kerim/Synthetic-Data-Usability-2024.
Related papers
- DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data [61.62554324594797]
We propose DreamMask, which explores how to generate training data in the open-vocabulary setting, and how to train the model with both real and synthetic data.
In general, DreamMask significantly simplifies the collection of large-scale training data, serving as a plug-and-play enhancement for existing methods.
For instance, when trained on COCO and tested on ADE20K, the model equipped with DreamMask outperforms the previous state-of-the-art by a substantial margin of 2.1% mIoU.
arXiv Detail & Related papers (2025-01-03T19:00:00Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
We propose a methodology for improving the performance of a pre-trained object detector when training on synthetic data.
Our approach focuses on extracting the salient information from synthetic data without forgetting useful features learned from pre-training on real images.
arXiv Detail & Related papers (2024-05-30T08:31:01Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
Adding synthetic training data using generative models offers a low-cost method to deal with the data scarcity challenge.
We show that training with both synthetic and real data outperforms training with real data alone.
arXiv Detail & Related papers (2023-10-05T15:42:53Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.