Self-CephaloNet: A Two-stage Novel Framework using Operational Neural Network for Cephalometric Analysis
- URL: http://arxiv.org/abs/2501.10984v1
- Date: Sun, 19 Jan 2025 08:37:27 GMT
- Title: Self-CephaloNet: A Two-stage Novel Framework using Operational Neural Network for Cephalometric Analysis
- Authors: Md. Shaheenur Islam Sumon, Khandaker Reajul Islam, Tanzila Rafique, Gazi Shamim Hassan, Md. Sakib Abrar Hossain, Kanchon Kanti Podder, Noha Barhom, Faleh Tamimi, Abdulrahman Alqahtani, Muhammad E. H. Chowdhury,
- Abstract summary: We propose an end-to-end cascaded deep learning framework (Self-CepahloNet) for the task.
Self-ONN (self-operational neural networks) demonstrate superior learning performance for complex feature spaces.
Our model achieved a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2mm range.
- Score: 0.0
- License:
- Abstract: Cephalometric analysis is essential for the diagnosis and treatment planning of orthodontics. In lateral cephalograms, however, the manual detection of anatomical landmarks is a time-consuming procedure. Deep learning solutions hold the potential to address the time constraints associated with certain tasks; however, concerns regarding their performance have been observed. To address this critical issue, we proposed an end-to-end cascaded deep learning framework (Self-CepahloNet) for the task, which demonstrated benchmark performance over the ISBI 2015 dataset in predicting 19 dental landmarks. Due to their adaptive nodal capabilities, Self-ONN (self-operational neural networks) demonstrate superior learning performance for complex feature spaces over conventional convolutional neural networks. To leverage this attribute, we introduced a novel self-bottleneck in the HRNetV2 (High Resolution Network) backbone, which has exhibited benchmark performance on the ISBI 2015 dataset for the dental landmark detection task. Our first-stage results surpassed previous studies, showcasing the efficacy of our singular end-to-end deep learning model, which achieved a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2mm range for the Test1 and Test2 datasets. Moreover, the second stage significantly improved overall performance, yielding an impressive 82.25% average success rate for the datasets above within the same 2mm distance. Furthermore, external validation was conducted using the PKU cephalogram dataset. Our model demonstrated a commendable success rate of 75.95% within the 2mm range.
Related papers
- Benchmarking Pretrained Attention-based Models for Real-Time Recognition in Robot-Assisted Esophagectomy [2.847280871973632]
Esophageal cancer is among the most common types of cancer worldwide.
In recent years, robot-assisted minimally invasive esophagectomy has emerged as a promising alternative.
Computer-aided anatomy recognition holds promise for improving surgical navigation.
arXiv Detail & Related papers (2024-12-04T15:32:37Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Robust Deep Neural Network Estimation for Multi-dimensional Functional
Data [0.22843885788439797]
We propose a robust estimator for the location function from multi-dimensional functional data.
The proposed estimators are based on the deep neural networks with ReLU activation function.
The proposed method is also applied to analyze 2D and 3D images of patients with Alzheimer's disease.
arXiv Detail & Related papers (2022-05-19T14:53:33Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
Convolutional neural networks (CNNs) can improve accuracy and reduce operator time.
We developed a deep-learning mouse brain extraction tool by using a U-net CNN.
We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets.
arXiv Detail & Related papers (2022-03-11T02:00:27Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Robust Peak Detection for Holter ECGs by Self-Organized Operational
Neural Networks [12.773050144952593]
Deep convolutional neural networks (CNNs) have achieved state-of-the-art performance levels in Holter monitors.
In this study, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons.
Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset.
arXiv Detail & Related papers (2021-09-30T19:45:06Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Robustly Pre-trained Neural Model for Direct Temporal Relation
Extraction [10.832917897850361]
We studied several variants of BERT (Bidirectional Representations using Transformers)
We evaluated these methods using a direct temporal relations dataset which is a semantically focused subset of the 2012 i2b2 temporal relations challenge dataset.
Results: RoBERTa, which employs better pre-training strategies including using 10x larger corpus, has improved overall F measure by 0.0864 absolute score (on the 1.00 scale) and thus reducing the error rate by 24% relative to the previous state-of-the-art performance achieved with an SVM (support vector machine) model.
arXiv Detail & Related papers (2020-04-13T22:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.