pMixFed: Efficient Personalized Federated Learning through Adaptive Layer-Wise Mixup
- URL: http://arxiv.org/abs/2501.11002v1
- Date: Sun, 19 Jan 2025 10:15:36 GMT
- Title: pMixFed: Efficient Personalized Federated Learning through Adaptive Layer-Wise Mixup
- Authors: Yasaman Saadati, Mohammad Rostami, M. Hadi Amini,
- Abstract summary: pMixFed is a dynamic, layer-wise PFL approach that integrates mixup between shared global and personalized local models.
Our method introduces an adaptive strategy for partitioning between personalized and shared layers, a gradual transition of personalization degree to enhance local client adaptation, improved generalization across clients, and a novel aggregation mechanism to mitigate catastrophic forgetting.
- Score: 18.409463838775558
- License:
- Abstract: Traditional Federated Learning (FL) methods encounter significant challenges when dealing with heterogeneous data and providing personalized solutions for non-IID scenarios. Personalized Federated Learning (PFL) approaches aim to address these issues by balancing generalization and personalization, often through parameter decoupling or partial models that freeze some neural network layers for personalization while aggregating other layers globally. However, existing methods still face challenges of global-local model discrepancy, client drift, and catastrophic forgetting, which degrade model accuracy. To overcome these limitations, we propose pMixFed, a dynamic, layer-wise PFL approach that integrates mixup between shared global and personalized local models. Our method introduces an adaptive strategy for partitioning between personalized and shared layers, a gradual transition of personalization degree to enhance local client adaptation, improved generalization across clients, and a novel aggregation mechanism to mitigate catastrophic forgetting. Extensive experiments demonstrate that pMixFed outperforms state-of-the-art PFL methods, showing faster model training, increased robustness, and improved handling of data heterogeneity under different heterogeneous settings.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.
FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.
We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning (FL) has emerged as a groundbreaking distributed learning paradigm enabling clients to train a global model collaboratively without exchanging data.
We introduce FeDEQ, a novel FL framework that incorporates deep equilibrium learning and consensus optimization to harness compact global data representations for efficient personalization.
We show that FeDEQ matches the performance of state-of-the-art personalized FL methods, while significantly reducing communication size by up to 4 times and memory footprint by 1.5 times during training.
arXiv Detail & Related papers (2023-09-27T13:48:12Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
We present a novel framework for personalized Federated Learning (PFL)
PFL is a distributed learning scheme to train a shared model across clients.
We present a novel framework for PFL based on hierarchical modeling and variational inference.
arXiv Detail & Related papers (2023-05-21T20:12:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.