AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model
- URL: http://arxiv.org/abs/2501.11031v1
- Date: Sun, 19 Jan 2025 12:46:01 GMT
- Title: AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model
- Authors: Lipeng Ma, Weidong Yang, Yixuan Li, Ben Fei, Mingjie Zhou, Shuhao Li, Sihang Jiang, Bo Xu, Yanghua Xiao,
- Abstract summary: This paper introduces an adaptive log analysis framework known as AdaptiveLog.
It effectively reduces the costs associated with LLM while ensuring superior results.
Experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks.
- Score: 42.72663245137984
- License:
- Abstract: Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Systematic Analysis of LLM Contributions to Planning: Solver, Verifier, Heuristic [6.687149103409949]
We provide a systematic analysis of how large language models (LLMs) contribute to solving planning problems.
Our analysis reveals that although it is difficult for LLMs to generate correct plans out-of-the-box, LLMs are much better at providing feedback signals to intermediate/incomplete solutions.
arXiv Detail & Related papers (2024-12-12T18:16:46Z) - LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models [19.657278472819588]
We introduce Log-LLM, a novel log integrated with LLM capabilities.
We address the intricate challenge of parsing granularity, proposing a new metric to allow users to calibrate granularity to their specific needs.
Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark.
arXiv Detail & Related papers (2024-08-25T05:34:24Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - LUNAR: Unsupervised LLM-based Log Parsing [34.344687402936835]
We propose LUNAR, an unsupervised-based method for efficient and off-the-shelf log parsing.
Our key insight is that while LLMs may struggle with direct log parsing, their performance can be significantly enhanced through comparative analysis.
Experiments on large-scale public datasets demonstrate that LUNAR significantly outperforms state-of-the-art log crafts in terms of accuracy and efficiency.
arXiv Detail & Related papers (2024-06-11T11:32:01Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing [8.647406441990396]
We study the potential of using Large Language Models (LLMs) for log parsing and propose an LLM-based log based on generative inferences and few-shot tuning.
We find that smaller LLMs may be more effective than more complex LLMs; for instance where Flan-T5-base achieves comparable results as LLaMA-7B with a shorter time.
We also find that using LLMs pre-trained using logs from other systems does not always improve parsing accuracy.
arXiv Detail & Related papers (2024-04-27T20:34:29Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - LILAC: Log Parsing using LLMs with Adaptive Parsing Cache [38.04960745458878]
We propose LILAC, the first practical log parsing framework using large language models (LLMs) with adaptive parsing cache.
LLMs's lack of specialized log parsing capabilities currently hinders their accuracy in parsing.
We show LILAC outperforms state-of-the-art methods by 69.5% in terms of the average F1 score of template accuracy.
arXiv Detail & Related papers (2023-10-03T04:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.