Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques
- URL: http://arxiv.org/abs/2506.06579v1
- Date: Fri, 06 Jun 2025 23:13:08 GMT
- Title: Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques
- Authors: Adarsh Prasad Behera, Jaya Prakash Champati, Roberto Morabito, Sasu Tarkoma, James Gross,
- Abstract summary: Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
- Score: 14.892995952768352
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent progress in Language Models (LMs) has dramatically advanced the field of natural language processing (NLP), excelling at tasks like text generation, summarization, and question answering. However, their inference remains computationally expensive and energy intensive, especially in settings with limited hardware, power, or bandwidth. This makes it difficult to deploy LMs in mobile, edge, or cost sensitive environments. To address these challenges, recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity -- using lightweight models for simpler queries and escalating to larger models only when necessary. This survey explores two complementary strategies for efficient LLM inference: (i) routing, which selects the most suitable model based on the query, and (ii) cascading or hierarchical inference (HI), which escalates queries through a sequence of models until a confident response is found. Both approaches aim to reduce computation by using lightweight models for simpler tasks while offloading only when needed. We provide a comparative analysis of these techniques across key performance metrics, discuss benchmarking efforts, and outline open challenges. Finally, we outline future research directions to enable faster response times, adaptive model selection based on task complexity, and scalable deployment across heterogeneous environments, making LLM based systems more efficient and accessible for real world applications.
Related papers
- LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.<n>We introduce a new REC dataset with two key features. First, it is designed with controllable difficulty levels, requiring fine-grained reasoning across object categories, attributes, and relationships.<n>Second, it incorporates negative text and images generated through fine-grained editing, explicitly testing a model's ability to reject non-existent targets.
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - PickLLM: Context-Aware RL-Assisted Large Language Model Routing [0.5325390073522079]
PickLLM is a lightweight framework that relies on Reinforcement Learning (RL) to route on-the-fly queries to available models.<n>We demonstrate the speed of convergence for different learning rates and improvement in hard metrics such as cost per querying session and overall response latency.
arXiv Detail & Related papers (2024-12-12T06:27:12Z) - EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.<n>We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.<n>Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models [16.16372459671255]
Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget.
We propose a novel framework that integrates smaller auxiliary modules within each Feed-Forward Network layer of the LLM.
We show that trained routers operate differently from oracles and often yield suboptimal solutions.
arXiv Detail & Related papers (2024-10-01T16:10:21Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have been widely adopted due to their remarkable performance across various applications.<n>These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.<n>We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.