BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
- URL: http://arxiv.org/abs/2501.11043v1
- Date: Sun, 19 Jan 2025 13:29:41 GMT
- Title: BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
- Authors: Eunjin Kim, Hyeonjin Kim, Kyong Hwan Jin, Jaejun Yoo,
- Abstract summary: We propose a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video.
Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
- Score: 14.082598088990352
- License:
- Abstract: Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
Related papers
- DiffVSR: Enhancing Real-World Video Super-Resolution with Diffusion Models for Advanced Visual Quality and Temporal Consistency [25.756755602342942]
We present DiffVSR, a diffusion-based framework for real-world video super-resolution.
For intra-sequence coherence, we develop a multi-scale temporal attention module and temporal-enhanced VAE decoder.
We propose a progressive learning strategy that transitions from simple to complex degradations, enabling robust optimization.
arXiv Detail & Related papers (2025-01-17T10:53:03Z) - HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera [22.208120663778043]
Continuous space-time super-resolution (C-STVSR) aims to simultaneously enhance resolution and frame rate at an arbitrary scale.
We propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on implicit neural representation (INR)
We then propose a novel INR-based decoder withtemporal embeddings to capture long-term dependencies with a larger temporal perception field.
arXiv Detail & Related papers (2024-05-22T06:51:32Z) - Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution [151.1255837803585]
We propose a novel approach, pursuing Spatial Adaptation and Temporal Coherence (SATeCo) for video super-resolution.
SATeCo pivots on learning spatial-temporal guidance from low-resolution videos to calibrate both latent-space high-resolution video denoising and pixel-space video reconstruction.
Experiments conducted on the REDS4 and Vid4 datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-03-25T17:59:26Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos [69.22032459870242]
We present a novel technique, Residual Radiance Field or ReRF, as a highly compact neural representation to achieve real-time free-view rendering on long-duration dynamic scenes.
We show such a strategy can handle large motions without sacrificing quality.
Based on ReRF, we design a special FVV that achieves three orders of magnitudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes.
arXiv Detail & Related papers (2023-04-10T08:36:00Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
We show how to train neural representations with learnable positional features (NVP) that effectively amortize a video as latent codes.
We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07rightarrow$34.57 (measured with the PSNR metric)
arXiv Detail & Related papers (2022-10-13T08:15:08Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
We study a practical space-time video super-resolution (STVSR) problem which aims at generating a high-framerate high-resolution sharp video from a low-framerate blurry video.
We propose an interpretable STVSR framework by leveraging both model-based and learning-based methods.
arXiv Detail & Related papers (2022-07-21T21:34:05Z) - STDAN: Deformable Attention Network for Space-Time Video
Super-Resolution [39.18399652834573]
We propose a deformable attention network called STDAN for STVSR.
First, we devise a long-short term feature (LSTFI) module, which is capable of abundant content from more neighboring input frames.
Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts are adaptively captured and aggregated.
arXiv Detail & Related papers (2022-03-14T03:40:35Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.