論文の概要: Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
- arxiv url: http://arxiv.org/abs/2501.11053v1
- Date: Sun, 19 Jan 2025 14:09:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:28.623448
- Title: Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
- Title(参考訳): デュアル表現空間におけるクラス非依存マージンによるオープンワールドノイズデータによる学習
- Authors: Linchao Pan, Can Gao, Jie Zhou, Jinbao Wang,
- Abstract要約: オープンワールドノイズを頑健に扱える新しい二空間共同学習法を提案する。
CIFAR80Nの平均精度は4.55%、AUROCは6.17%向上した。
- 参考スコア(独自算出の注目度): 25.472718931422307
- License:
- Abstract: Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. However, in real-world scenarios, noisy labels from similar unknown classes, i.e., open-set noise, may occur during the training and inference stage. Such open-world noisy labels may significantly impact the performance of LNL methods. In this study, we propose a novel dual-space joint learning method to robustly handle the open-world noise. To mitigate model overfitting on closed-set and open-set noises, a dual representation space is constructed by two networks. One is a projection network that learns shared representations in the prototype space, while the other is a One-Vs-All (OVA) network that makes predictions using unique semantic representations in the class-independent space. Then, bi-level contrastive learning and consistency regularization are introduced in two spaces to enhance the detection capability for data with unknown classes. To benefit from the memorization effects across different types of samples, class-independent margin criteria are designed for sample identification, which selects clean samples, weights closed-set noise, and filters open-set noise effectively. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods and achieves an average accuracy improvement of 4.55\% and an AUROC improvement of 6.17\% on CIFAR80N.
- Abstract(参考訳): ノイズラベルを用いた学習(LNL)は、ノイズラベルを持つデータに直面する際のモデル一般化を改善することを目的としており、既存の手法では、ノイズラベルはクローズドセットノイズと呼ばれる既知のクラスから来ていると仮定している。
しかし、現実のシナリオでは、同様の未知のクラス、すなわちオープンセットノイズからのノイズラベルは、トレーニングと推論の段階で発生する可能性がある。
このようなオープンワールドノイズラベルはLNL法の性能に大きな影響を及ぼす可能性がある。
本研究では,オープンワールドノイズを頑健に扱える新しい二空間共同学習法を提案する。
閉集合と開集合の雑音に対するモデルオーバーフィッティングを緩和するため、2つのネットワークで二重表現空間を構築する。
1つは、プロトタイプ空間における共有表現を学習するプロジェクションネットワークであり、もう1つは、クラス独立空間におけるユニークな意味表現を用いた予測を行うOne-Vs-All(OVA)ネットワークである。
次に、2段階のコントラスト学習と整合性正規化を導入し、未知のクラスを持つデータの検出能力を向上する。
異なる種類のサンプル間での記憶効果の恩恵を受けるため、クラス非依存のマージン基準はサンプル識別のために設計され、クリーンサンプル、重み付きクローズドセットノイズ、および開集合ノイズを効果的にフィルタする。
CIFAR80Nの精度は4.55 %,AUROCは6.17 %向上した。
関連論文リスト
- ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
Learning [52.60434474638983]
本稿では,複雑な雑音グラフデータに対する堅牢なオープンセット学習を実現するために,ROG$_PL$という統一フレームワークを提案する。
このフレームワークは2つのモジュール、すなわちラベルの伝搬による認知と、リージョンによるオープンセットのプロトタイプ学習で構成されている。
我々の知る限り、ROG$_PL$は複雑なノイズを持つグラフデータに対して、最初の堅牢なオープンセットノード分類法である。
論文 参考訳(メタデータ) (2024-02-28T17:25:06Z) - FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy
Labels [99.70895640578816]
雑音ラベル付きフェデレーション学習(F-LNL)は,協調型分散学習を通じて最適なサーバモデルを求めることを目的としている。
我々はF-LNLの課題に取り組むためにFedDivを提案し、特にフェデレートノイズフィルタと呼ばれるグローバルノイズフィルタを提案する。
論文 参考訳(メタデータ) (2023-12-19T15:46:47Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Rethinking Noisy Label Learning in Real-world Annotation Scenarios from
the Noise-type Perspective [38.24239397999152]
本稿では,雑音ラベル学習のためのサンプル選択に基づく新しい手法であるProto-semiを提案する。
Proto-semiは、すべてのサンプルをウォームアップを通じて信頼性と信頼できないデータセットに分割する。
自信のあるデータセットを活用することで、プロトタイプベクターがクラス特性をキャプチャするために構築される。
実世界の注釈付きデータセットの実証評価は、ノイズラベルから学習する問題の処理において、プロトセミの頑健さを裏付けるものである。
論文 参考訳(メタデータ) (2023-07-28T10:57:38Z) - Unlocking the Power of Open Set : A New Perspective for Open-Set Noisy
Label Learning [58.4201336276109]
両タイプのラベルノイズに対処する2段階のコントラスト学習手法を提案する。
具体的には、性能を高めるために、いくつかのオープンセットの例をクローズドセットのクラスに組み込む。
論文 参考訳(メタデータ) (2023-05-07T06:55:28Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
オープンセットノイズラベルは非毒性であり, 固有ノイズラベルに対するロバスト性にも寄与することを示した。
本研究では,動的雑音ラベル(ODNL)を用いたオープンセットサンプルをトレーニングに導入することで,シンプルかつ効果的な正規化を提案する。
論文 参考訳(メタデータ) (2021-06-21T07:15:50Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
ディープニューラルネットワークは、ラベルノイズの存在下で過度に適合する傾向がある。
ポジティヴ・アンラベルラーニングの新たなサブカテゴリを取り入れた蒸留ベースのフレームワークを提案する。
我々の枠組みは概して中~高騒音レベルにおいて優れています。
論文 参考訳(メタデータ) (2021-05-27T13:49:31Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
開集合ラベルと閉集合ラベルを組み合わせた雑音ラベル問題の新しい変種について検討する。
その結果,従来の最先端手法よりも優れた分類結果と特徴表現が得られた。
論文 参考訳(メタデータ) (2020-11-11T11:15:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。