Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
- URL: http://arxiv.org/abs/2501.11053v1
- Date: Sun, 19 Jan 2025 14:09:04 GMT
- Title: Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
- Authors: Linchao Pan, Can Gao, Jie Zhou, Jinbao Wang,
- Abstract summary: We propose a novel dual-space joint learning method to robustly handle the open-world noise.
Our method achieves an average accuracy improvement of 4.55% and an AUROC improvement of 6.17% on CIFAR80N.
- Score: 25.472718931422307
- License:
- Abstract: Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. However, in real-world scenarios, noisy labels from similar unknown classes, i.e., open-set noise, may occur during the training and inference stage. Such open-world noisy labels may significantly impact the performance of LNL methods. In this study, we propose a novel dual-space joint learning method to robustly handle the open-world noise. To mitigate model overfitting on closed-set and open-set noises, a dual representation space is constructed by two networks. One is a projection network that learns shared representations in the prototype space, while the other is a One-Vs-All (OVA) network that makes predictions using unique semantic representations in the class-independent space. Then, bi-level contrastive learning and consistency regularization are introduced in two spaces to enhance the detection capability for data with unknown classes. To benefit from the memorization effects across different types of samples, class-independent margin criteria are designed for sample identification, which selects clean samples, weights closed-set noise, and filters open-set noise effectively. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods and achieves an average accuracy improvement of 4.55\% and an AUROC improvement of 6.17\% on CIFAR80N.
Related papers
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [4.795811957412855]
Noise in data appears to be inevitable in most real-world machine learning applications.
We investigate the less explored area of noisy label learning for multilabel classifications.
Our model posits that label noise arises from a shift in the latent variable, providing a more robust and beneficial means for noisy learning.
arXiv Detail & Related papers (2025-02-20T05:41:52Z) - ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
Learning [52.60434474638983]
We propose a unified framework named ROG$_PL$ to achieve robust open-set learning on complex noisy graph data.
The framework consists of two modules, i.e., denoising via label propagation and open-set prototype learning via regions.
To the best of our knowledge, the proposed ROG$_PL$ is the first robust open-set node classification method for graph data with complex noise.
arXiv Detail & Related papers (2024-02-28T17:25:06Z) - FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy
Labels [99.70895640578816]
Federated learning with noisy labels (F-LNL) aims at seeking an optimal server model via collaborative distributed learning.
We present FedDiv to tackle the challenges of F-LNL. Specifically, we propose a global noise filter called Federated Noise Filter.
arXiv Detail & Related papers (2023-12-19T15:46:47Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Rethinking Noisy Label Learning in Real-world Annotation Scenarios from
the Noise-type Perspective [38.24239397999152]
We propose a novel sample selection-based approach for noisy label learning, called Proto-semi.
Proto-semi divides all samples into the confident and unconfident datasets via warm-up.
By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics.
Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels.
arXiv Detail & Related papers (2023-07-28T10:57:38Z) - Unlocking the Power of Open Set : A New Perspective for Open-Set Noisy
Label Learning [58.4201336276109]
We propose a novel two-step contrastive learning method to deal with both types of label noise.
Specifically, we incorporate some open-set examples into closed-set classes to enhance performance.
arXiv Detail & Related papers (2023-05-07T06:55:28Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.