Temporal Analysis of Adversarial Attacks in Federated Learning
- URL: http://arxiv.org/abs/2501.11054v1
- Date: Sun, 19 Jan 2025 14:09:13 GMT
- Title: Temporal Analysis of Adversarial Attacks in Federated Learning
- Authors: Rohit Mapakshi, Sayma Akther, Mark Stamp,
- Abstract summary: We find that temporal attacks significantly affect model performance in the FL models tested, especially when adversaries are active throughout or during the later rounds.
Our results highlight the effectiveness of temporal attacks and the need to develop strategies to make the FL process more robust against such attacks.
- Score: 1.3108652488669732
- License:
- Abstract: In this paper, we experimentally analyze the robustness of selected Federated Learning (FL) systems in the presence of adversarial clients. We find that temporal attacks significantly affect model performance in the FL models tested, especially when the adversaries are active throughout or during the later rounds. We consider a variety of classic learning models, including Multinominal Logistic Regression (MLR), Random Forest, XGBoost, Support Vector Classifier (SVC), as well as various Neural Network models including Multilayer Perceptron (MLP), Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Our results highlight the effectiveness of temporal attacks and the need to develop strategies to make the FL process more robust against such attacks. We also briefly consider the effectiveness of defense mechanisms, including outlier detection in the aggregation algorithm.
Related papers
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.
We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.
We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - Correlation Analysis of Adversarial Attack in Time Series Classification [6.117704456424016]
This study investigates the vulnerability of time series classification models to adversarial attacks.
Regularization techniques and noise introduction are shown to enhance the effectiveness of attacks.
Models designed to prioritize global information are revealed to possess greater resistance to adversarial manipulations.
arXiv Detail & Related papers (2024-08-21T01:11:32Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays through two approaches.
In the latter approach, the network selects and prunes connections, optimizing the delays in sparse connectivity settings.
Our results demonstrate the potential of combining delay learning with dynamic pruning to develop efficient SNN models for temporal data processing.
arXiv Detail & Related papers (2024-07-07T11:55:48Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Exploring the Vulnerabilities of Machine Learning and Quantum Machine
Learning to Adversarial Attacks using a Malware Dataset: A Comparative
Analysis [0.0]
Machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems.
Their susceptibility to adversarial attacks raises concerns when deploying these systems in security sensitive applications.
We present a comparative analysis of the vulnerability of ML and QNN models to adversarial attacks using a malware dataset.
arXiv Detail & Related papers (2023-05-31T06:31:42Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
We propose an efficient method called TSFool to craft highly-imperceptible adversarial time series for RNN-based TSC.
The core idea is a new global optimization objective known as "Camouflage Coefficient" that captures the imperceptibility of adversarial samples from the class distribution.
Experiments on 11 UCR and UEA datasets showcase that TSFool significantly outperforms six white-box and three black-box benchmark attacks.
arXiv Detail & Related papers (2022-09-14T03:02:22Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
The amount of data generated on windmill farms makes online learning the most viable strategy to follow.
We use Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online settings.
Our approach reported the lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.
arXiv Detail & Related papers (2021-07-01T13:13:24Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
We present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference.
In this work, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-11-02T17:12:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.