IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems
- URL: http://arxiv.org/abs/2501.11067v1
- Date: Sun, 19 Jan 2025 14:58:35 GMT
- Title: IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems
- Authors: Elad Levi, Ilan Kadar,
- Abstract summary: We introduce IntellAgent, a scalable, open-source framework to evaluate conversational AI systems.<n>IntellAgent automates the creation of synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations.<n>Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment.
- Score: 2.2810745411557316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent
Related papers
- Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training [67.895981259683]
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence.<n>Current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools.<n>We present Cognitive Kernel-Pro, a fully open-source and (to the maximum extent) free multi-module agent framework.
arXiv Detail & Related papers (2025-08-01T08:11:31Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - AgentMaster: A Multi-Agent Conversational Framework Using A2A and MCP Protocols for Multimodal Information Retrieval and Analysis [0.0]
We present a pilot study of AgentMaster, a novel modular multi-protocol MAS framework with self-implemented A2A and MCP.<n>The system supports natural language interaction without prior technical expertise and responds to multimodal queries.<n>Overall, our proposed framework contributes to the potential capabilities of domain-specific, cooperative, and scalable conversational AI powered by MAS.
arXiv Detail & Related papers (2025-07-08T03:34:26Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis.<n>Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements.<n>Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy.
arXiv Detail & Related papers (2025-05-15T16:21:33Z) - From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review [1.4929298667651645]
We present a comparison of benchmarks developed between 2019 and 2025 that evaluate large language models and autonomous AI agents.
We propose a taxonomy of approximately 60 benchmarks that cover knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments.
We present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance.
arXiv Detail & Related papers (2025-04-28T11:08:22Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
API- and GUI-based large language models (LLMs) interact with graphical user interfaces in a human-like manner.
This paper systematically analyzes their divergence and potential convergence.
We indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents.
arXiv Detail & Related papers (2025-03-14T04:26:21Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
We propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values.
With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value.
We empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis.
arXiv Detail & Related papers (2025-02-04T18:58:31Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World [50.937342998351426]
Chain-of-User-Thought (COUT) is a novel embodied reasoning paradigm.
We introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements.
Our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning.
arXiv Detail & Related papers (2024-12-10T12:40:35Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI)
Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces.
arXiv Detail & Related papers (2024-10-10T17:43:51Z) - MOSS: Enabling Code-Driven Evolution and Context Management for AI Agents [7.4159044558995335]
We introduce MOSS (llM-oriented Operating System Simulation), a novel framework that integrates code generation with a dynamic context management system.
At its core, the framework employs an Inversion of Control container in conjunction with decorators to enforce the least knowledge principle.
We show how this framework can enhance the efficiency and capabilities of agent development and highlight its advantages in moving towards Turing-complete agents.
arXiv Detail & Related papers (2024-09-24T14:30:21Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.