MOSS: Enabling Code-Driven Evolution and Context Management for AI Agents
- URL: http://arxiv.org/abs/2409.16120v1
- Date: Tue, 24 Sep 2024 14:30:21 GMT
- Title: MOSS: Enabling Code-Driven Evolution and Context Management for AI Agents
- Authors: Ming Zhu, Yi Zhou,
- Abstract summary: We introduce MOSS (llM-oriented Operating System Simulation), a novel framework that integrates code generation with a dynamic context management system.
At its core, the framework employs an Inversion of Control container in conjunction with decorators to enforce the least knowledge principle.
We show how this framework can enhance the efficiency and capabilities of agent development and highlight its advantages in moving towards Turing-complete agents.
- Score: 7.4159044558995335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing AI agents powered by large language models (LLMs) faces significant challenges in achieving true Turing completeness and adaptive, code-driven evolution. Current approaches often generate code independently of its runtime context, relying heavily on the LLM's memory, which results in inefficiencies and limits adaptability. Manual protocol development in sandbox environments further constrains the agent's autonomous adaptability. Crucially, achieving consistency in code and context across multi-turn interactions and ensuring isolation of local variables within each interaction remains an unsolved problem. We introduce MOSS (llM-oriented Operating System Simulation), a novel framework that addresses these challenges by integrating code generation with a dynamic context management system. MOSS ensures consistency and adaptability by using a mechanism that maintains the Python context across interactions, including isolation of local variables and preservation of runtime integrity. At its core, the framework employs an Inversion of Control (IoC) container in conjunction with decorators to enforce the least knowledge principle, allowing agents to focus on abstract interfaces rather than concrete implementations. This facilitates seamless integration of new tools and libraries, enables runtime instance replacement, and reduces prompt complexity, providing a "what you see is what you get" environment for the agent. Through a series of case studies, we show how this framework can enhance the efficiency and capabilities of agent development and highlight its advantages in moving towards Turing-complete agents capable of evolving through code.
Related papers
- Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks [39.084974125007165]
We introduce Magentic-One, a high-performing open-source agentic system for solving complex tasks.
Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, tracks progress, and re-plans to recover from errors.
We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks.
arXiv Detail & Related papers (2024-11-07T06:36:19Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Breaking Down the Task: A Unit-Grained Hybrid Training Framework for
Vision and Language Decision Making [19.87916700767421]
Vision language decision making (VLDM) is a challenging multimodal task.
From an environment perspective, we find that task episodes can be divided into fine-grained textitunits
We propose a novel hybrid-training framework that enables active exploration in the environment and reduces the exposure bias.
arXiv Detail & Related papers (2023-07-16T11:54:16Z) - SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex
Interactive Tasks [81.9962823875981]
We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition.
The framework comprises two primary modules: the Swift module, representing fast and intuitive thinking, and the Sage module, emulating deliberate thought processes.
In 30 tasks from the ScienceWorld benchmark, SwiftSage significantly outperforms other methods such as SayCan, ReAct, and Reflex.
arXiv Detail & Related papers (2023-05-27T07:04:15Z) - CoRL: Environment Creation and Management Focused on System Integration [0.0]
The Core Reinforcement Learning library (CoRL) is a modular, composable, and hyper-configurable environment creation tool.
It allows minute control over agent observations, rewards, and done conditions through the use of easy-to-read configuration files, pydantic validators, and a functor design pattern.
arXiv Detail & Related papers (2023-03-03T19:01:53Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
Behavioural agents must generalize across a variety of environments and objectives over time.
We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature.
We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory.
arXiv Detail & Related papers (2021-06-23T21:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.