A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data
- URL: http://arxiv.org/abs/2501.11112v2
- Date: Fri, 24 Jan 2025 20:32:45 GMT
- Title: A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data
- Authors: Mohammad Ghabel Rahmat, Majid Khalilian,
- Abstract summary: This paper proposes a novel method to improve the quality of local updates and enhance the robustness of the global model.
The proposed merging algorithm reduces the number of local nodes while maintaining the accuracy of the global model.
Experimental results on the MNIST dataset under simulated federated learning scenarios demonstrate the method's effectiveness.
- Score: 0.0
- License:
- Abstract: Federated learning faces significant challenges in scenarios with heterogeneous data distributions and adverse network conditions, such as delays, packet loss, and data poisoning attacks. This paper proposes a novel method based on the SCAFFOLD algorithm to improve the quality of local updates and enhance the robustness of the global model. The key idea is to form intermediary nodes by merging local models with high similarity, using the Pearson correlation coefficient as a similarity measure. The proposed merging algorithm reduces the number of local nodes while maintaining the accuracy of the global model, effectively addressing communication overhead and bandwidth consumption. Experimental results on the MNIST dataset under simulated federated learning scenarios demonstrate the method's effectiveness. After 10 rounds of training using a CNN model, the proposed approach achieved accuracies of 0.82, 0.73, and 0.66 under normal conditions, packet loss and data poisoning attacks, respectively, outperforming the baseline SCAFFOLD algorithm. These results highlight the potential of the proposed method to improve efficiency and resilience in federated learning systems.
Related papers
- Non-Convex Optimization in Federated Learning via Variance Reduction and Adaptive Learning [13.83895180419626]
This paper proposes a novel algorithm that leverages momentum-based variance reduction with adaptive learning to address non-epsilon settings across heterogeneous data.
We aim to overcome challenges related to variance, hinders efficiency, and the slow convergence from learning rate adjustments with heterogeneous data.
arXiv Detail & Related papers (2024-12-16T11:02:38Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - Recursive Euclidean Distance Based Robust Aggregation Technique For
Federated Learning [4.848016645393023]
Federated learning is a solution to data availability and privacy challenges in machine learning.
Malicious users aim to sabotage the collaborative learning process by training the local model with malicious data.
We propose a novel robust aggregation approach based on Euclidean distance calculation.
arXiv Detail & Related papers (2023-03-20T06:48:43Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.