Non-Convex Optimization in Federated Learning via Variance Reduction and Adaptive Learning
- URL: http://arxiv.org/abs/2412.11660v1
- Date: Mon, 16 Dec 2024 11:02:38 GMT
- Title: Non-Convex Optimization in Federated Learning via Variance Reduction and Adaptive Learning
- Authors: Dipanwita Thakur, Antonella Guzzo, Giancarlo Fortino, Sajal K. Das,
- Abstract summary: This paper proposes a novel algorithm that leverages momentum-based variance reduction with adaptive learning to address non-epsilon settings across heterogeneous data.
We aim to overcome challenges related to variance, hinders efficiency, and the slow convergence from learning rate adjustments with heterogeneous data.
- Score: 13.83895180419626
- License:
- Abstract: This paper proposes a novel federated algorithm that leverages momentum-based variance reduction with adaptive learning to address non-convex settings across heterogeneous data. We intend to minimize communication and computation overhead, thereby fostering a sustainable federated learning system. We aim to overcome challenges related to gradient variance, which hinders the model's efficiency, and the slow convergence resulting from learning rate adjustments with heterogeneous data. The experimental results on the image classification tasks with heterogeneous data reveal the effectiveness of our suggested algorithms in non-convex settings with an improved communication complexity of $\mathcal{O}(\epsilon^{-1})$ to converge to an $\epsilon$-stationary point - compared to the existing communication complexity $\mathcal{O}(\epsilon^{-2})$ of most prior works. The proposed federated version maintains the trade-off between the convergence rate, number of communication rounds, and test accuracy while mitigating the client drift in heterogeneous settings. The experimental results demonstrate the efficiency of our algorithms in image classification tasks (MNIST, CIFAR-10) with heterogeneous data.
Related papers
- A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data [0.0]
This paper proposes a novel method to improve the quality of local updates and enhance the robustness of the global model.
The proposed merging algorithm reduces the number of local nodes while maintaining the accuracy of the global model.
Experimental results on the MNIST dataset under simulated federated learning scenarios demonstrate the method's effectiveness.
arXiv Detail & Related papers (2025-01-19T16:59:07Z) - Byzantine-resilient Federated Learning Employing Normalized Gradients on Non-IID Datasets [23.640506243685863]
In practical federated learning (FLNGA) the presence of malicious attacks and data heterogeneity often introduces biases into the learning process.
We propose a Normalized Gradient unit (Fed-M) model which normalizes uploaded local gradients to be before aggregation, achieving a time of $mathcalO(pM)$.
arXiv Detail & Related papers (2024-08-18T16:50:39Z) - Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data [23.661713049508375]
We propose an algorithm that learns over a submanifold in the setting of a client.
We show that our proposed algorithm converges sub-ly to a neighborhood of a first-order optimal solution by using a novel analysis.
arXiv Detail & Related papers (2024-06-12T17:53:28Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.