Code Readability in the Age of Large Language Models: An Industrial Case Study from Atlassian
- URL: http://arxiv.org/abs/2501.11264v1
- Date: Mon, 20 Jan 2025 04:11:21 GMT
- Title: Code Readability in the Age of Large Language Models: An Industrial Case Study from Atlassian
- Authors: Wannita Takerngsaksiri, Micheal Fu, Chakkrit Tantithamthavorn, Jirat Pasuksmit, Kun Chen, Ming Wu,
- Abstract summary: We conduct a survey to explore the perspectives on code readability in the age of large language models (LLMs)<n>We compare our LLM-based software development agents framework, HULA, by comparing its generated code with human-written code in real-world scenarios.<n>Overall, the findings underscore that readability remains a critical aspect of software development.
- Score: 6.2250765474961405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Programmers spend a significant amount of time reading code during the software development process. This trend is amplified by the emergence of large language models (LLMs) that automatically generate code. However, little is known about the readability of the LLM-generated code and whether it is still important from practitioners' perspectives in this new era. In this paper, we conduct a survey to explore the practitioners' perspectives on code readability in the age of LLMs and investigate the readability of our LLM-based software development agents framework, HULA, by comparing its generated code with human-written code in real-world scenarios. Overall, the findings underscore that (1) readability remains a critical aspect of software development; (2) the readability of our LLM-generated code is comparable to human-written code, fostering the establishment of appropriate trust and driving the broad adoption of our LLM-powered software development platform.
Related papers
- Pragmatic Reasoning improves LLM Code Generation [35.78260347663757]
We propose CodeRSA, a novel code candidate reranking mechanism built upon the Rational Speech Act (RSA) framework.
We evaluate CodeRSA using one of the latest Large Language Models on a popular code generation dataset.
arXiv Detail & Related papers (2025-02-20T12:44:26Z) - Renaissance of Literate Programming in the Era of LLMs: Enhancing LLM-Based Code Generation in Large-Scale Projects [7.927743991760644]
Large Language Models (LLMs) have helped programmers increase efficiency through code generation, comprehension, and repair.
Their application to large-scale projects remains challenging due to complex interdependencies and the extensive size of moderns.
In this study, we introduce the idea of Interoperable LP (ILP), which leverages literate programming principles to enhance the development of both small-scale documents and large-scale projects with LLMs.
arXiv Detail & Related papers (2024-12-25T12:02:46Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - LiCoEval: Evaluating LLMs on License Compliance in Code Generation [27.368667936460508]
Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers.
LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production.
This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code.
arXiv Detail & Related papers (2024-08-05T14:09:30Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that inserts additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - Assured LLM-Based Software Engineering [51.003878077888686]
This paper is an outline of the content of the keynote by Mark Harman at the International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering, Monday 15th April 2024, Lisbon, Portugal.
arXiv Detail & Related papers (2024-02-06T20:38:46Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.