MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
- URL: http://arxiv.org/abs/2501.11299v3
- Date: Tue, 24 Jun 2025 02:14:38 GMT
- Title: MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
- Authors: Yepeng Liu, Zhichao Sun, Baosheng Yu, Yitian Zhao, Bo Du, Yongchao Xu, Jun Cheng,
- Abstract summary: Keypoint detection and description methods often struggle with multimodal data.<n>We propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching.
- Score: 54.740256498985026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. %, our approach generates robust and invariant features across diverse and unknown modalities. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The code will be released at https://github.com/lyp-deeplearning/MIFNet.
Related papers
- FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens [56.752362642658504]
We present FuseLIP, an alternative architecture for multimodal embedding.<n>We propose a single transformer model which operates on an extended vocabulary of text and image tokens.<n>We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval.
arXiv Detail & Related papers (2025-06-03T17:27:12Z) - A Multi-Modal Federated Learning Framework for Remote Sensing Image Classification [2.725507329935916]
This paper introduces a novel multi-modal FL framework for RS image classification problems.
The proposed framework comprises three modules: multi-modal fusion (MF), feature whitening (FW), and mutual information module (MIM)
arXiv Detail & Related papers (2025-03-13T11:20:15Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.
It is designed to accurately detect horizontal or oriented objects from any sensor modality.
This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - MMP: Towards Robust Multi-Modal Learning with Masked Modality Projection [10.909746391230206]
Multimodal learning seeks to combine data from multiple input sources to enhance the performance of downstream tasks.
Existing methods that can handle missing modalities involve custom training or adaptation steps for each input modality combination.
We propose Masked Modality Projection (MMP), a method designed to train a single model that is robust to any missing modality scenario.
arXiv Detail & Related papers (2024-10-03T21:41:12Z) - Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance [15.435695491233982]
We propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the Segment Anything Model (SAM) for multi-modal salient object detection (SOD)
We develop underlineSAM with seunderlinemantic funderlineeature fuunderlinesion guidancunderlinee (Sammese)
In the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. Specifically, in the mask decoder, a semantic-geometric
arXiv Detail & Related papers (2024-08-27T13:47:31Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - CoCoT: Contrastive Chain-of-Thought Prompting for Large Multimodal
Models with Multiple Image Inputs [48.269363759989915]
The research focuses on two aspects: first, image-to-image matching, and second, multi-image-to-text matching.
We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL.
arXiv Detail & Related papers (2024-01-05T00:26:07Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
We propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter.
We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another.
Our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods.
arXiv Detail & Related papers (2023-12-17T05:27:31Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
We present a pure transformer-based framework, dubbed the Flexible Modal Vision Transformer (FM-ViT) for face anti-spoofing.
FM-ViT can flexibly target any single-modal (i.e., RGB) attack scenarios with the help of available multi-modal data.
Experiments demonstrate that the single model trained based on FM-ViT can not only flexibly evaluate different modal samples, but also outperforms existing single-modal frameworks by a large margin.
arXiv Detail & Related papers (2023-05-05T04:28:48Z) - ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training [29.240131406803794]
We show that a common space can be created without any training at all, using single-domain encoders and a much smaller amount of image-text pairs.
Our model has unique properties, most notably, deploying a new version with updated training samples can be done in a matter of seconds.
arXiv Detail & Related papers (2022-10-04T16:56:22Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - CLMLF:A Contrastive Learning and Multi-Layer Fusion Method for
Multimodal Sentiment Detection [24.243349217940274]
We propose a Contrastive Learning and Multi-Layer Fusion (CLMLF) method for multimodal sentiment detection.
Specifically, we first encode text and image to obtain hidden representations, and then use a multi-layer fusion module to align and fuse the token-level features of text and image.
In addition to the sentiment analysis task, we also designed two contrastive learning tasks, label based contrastive learning and data based contrastive learning tasks.
arXiv Detail & Related papers (2022-04-12T04:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.