Neural Contextual Reinforcement Framework for Logical Structure Language Generation
- URL: http://arxiv.org/abs/2501.11417v1
- Date: Mon, 20 Jan 2025 11:34:28 GMT
- Title: Neural Contextual Reinforcement Framework for Logical Structure Language Generation
- Authors: Marcus Irvin, William Cooper, Edward Hughes, Jessica Morgan, Christopher Hamilton,
- Abstract summary: The framework integrates custom reward functions and dynamic context alignment mechanisms.
It produces outputs that align closely with human expectations of logical structure and semantic flow.
It exhibits robustness in handling noisy input data and scalability across varying model sizes.
- Score: 1.08272575635683
- License:
- Abstract: The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
Related papers
- Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence [0.0]
Representation learning plays a central role in structuring internal embeddings to capture statistical properties of language.
Coherence alignment is introduced as a method to enforce structured token representations through tensor field convergence.
Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings.
arXiv Detail & Related papers (2025-02-13T23:24:25Z) - Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation [0.0]
The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation.
A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment.
The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling.
arXiv Detail & Related papers (2025-02-08T00:49:32Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.
The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.
The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration [0.0]
This paper introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions.
Experimental evaluations demonstrate substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks.
The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
arXiv Detail & Related papers (2025-01-22T14:21:04Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.