Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks
- URL: http://arxiv.org/abs/2407.03967v2
- Date: Mon, 28 Oct 2024 09:52:09 GMT
- Title: Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks
- Authors: Amit Parekh, Nikolas Vitsakis, Alessandro Suglia, Ioannis Konstas,
- Abstract summary: This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
- Score: 50.75902473813379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the generalisation capabilities of multimodal models based solely on their performance on out-of-distribution data fails to capture their true robustness. This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models, considering architectural design, input perturbations across language and vision modalities, and increased task complexity. The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes, raising concerns about overfitting to spurious correlations. By employing this evaluation framework on current Transformer-based multimodal models for robotic manipulation tasks, we uncover limitations and suggest future advancements should focus on architectural and training innovations that better integrate multimodal inputs, enhancing a model's generalisation prowess by prioritising sensitivity to input content over incidental correlations.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - On the generalization capacity of neural networks during generic
multimodal reasoning [20.1430673356983]
We evaluate and compare large language models' capacity for multimodal generalization.
For multimodal distractor and systematic generalization, either cross-modal attention or models with deeper attention layers are key architectural features required to integrate multimodal inputs.
arXiv Detail & Related papers (2024-01-26T17:42:59Z) - Model-Agnostic Interpretation Framework in Machine Learning: A
Comparative Study in NBA Sports [0.2937071029942259]
We propose an innovative framework to reconcile the trade-off between model performance and interpretability.
Our approach is centered around modular operations on high-dimensional data, which enable end-to-end processing while preserving interpretability.
We have extensively tested our framework and validated its superior efficacy in achieving a balance between computational efficiency and interpretability.
arXiv Detail & Related papers (2024-01-05T04:25:21Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Rethinking Self-Supervision Objectives for Generalizable Coherence
Modeling [8.329870357145927]
Coherence evaluation of machine generated text is one of the principal applications of coherence models that needs to be investigated.
We explore training data and self-supervision objectives that result in a model that generalizes well across tasks.
We show empirically that increasing the density of negative samples improves the basic model, and using a global negative queue further improves and stabilizes the model while training with hard negative samples.
arXiv Detail & Related papers (2021-10-14T07:44:14Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
We argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE.
MUSE is the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games.
We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss.
arXiv Detail & Related papers (2021-10-07T16:35:23Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.