On the Adversarial Vulnerabilities of Transfer Learning in Remote Sensing
- URL: http://arxiv.org/abs/2501.11462v1
- Date: Mon, 20 Jan 2025 12:50:00 GMT
- Title: On the Adversarial Vulnerabilities of Transfer Learning in Remote Sensing
- Authors: Tao Bai, Xingjian Tian, Yonghao Xu, Bihan Wen,
- Abstract summary: This paper presents a novel Adversarial Neuron Manipulation method.
It generates transferable perturbations by selectively manipulating single or multiple neurons in pretrained models.
Experiments on diverse models and remote sensing datasets validate the effectiveness of the proposed method.
- Score: 26.53616017493966
- License:
- Abstract: The use of pretrained models from general computer vision tasks is widespread in remote sensing, significantly reducing training costs and improving performance. However, this practice also introduces vulnerabilities to downstream tasks, where publicly available pretrained models can be used as a proxy to compromise downstream models. This paper presents a novel Adversarial Neuron Manipulation method, which generates transferable perturbations by selectively manipulating single or multiple neurons in pretrained models. Unlike existing attacks, this method eliminates the need for domain-specific information, making it more broadly applicable and efficient. By targeting multiple fragile neurons, the perturbations achieve superior attack performance, revealing critical vulnerabilities in deep learning models. Experiments on diverse models and remote sensing datasets validate the effectiveness of the proposed method. This low-access adversarial neuron manipulation technique highlights a significant security risk in transfer learning models, emphasizing the urgent need for more robust defenses in their design when addressing the safety-critical remote sensing tasks.
Related papers
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.
We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.
We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
We propose a novel approach to counter backdoor attacks by treating their mitigation as an unlearning task.
Our approach offers simplicity and effectiveness, rendering it well-suited for scenarios with limited data availability.
arXiv Detail & Related papers (2024-05-07T00:36:56Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
We show that a general neural network is particularly suitable for detecting and localizing malicious agents.
We propose to adopt one of the state-of-art approaches in federated learning, i.e., a collaborative peer-to-peer machine learning protocol.
In our simulations, a least-squared problem is considered to verify the feasibility and effectiveness of AI-based methods.
arXiv Detail & Related papers (2021-01-18T08:01:06Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
arXiv Detail & Related papers (2020-12-08T20:51:43Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and any-shot learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning and the any-shot learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-05T02:15:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.