Replica Wormholes, Modular Entropy, and Capacity of Entanglement in JT Gravity
- URL: http://arxiv.org/abs/2501.11474v1
- Date: Mon, 20 Jan 2025 13:03:37 GMT
- Title: Replica Wormholes, Modular Entropy, and Capacity of Entanglement in JT Gravity
- Authors: Ming-Hui Yu, Shu-Yi Lin, Xian-Hui Ge,
- Abstract summary: We study the impact of the replica parameter $n$ on the modular entropy and the capacity of entanglement in the End of the World (EoW) model and the island model, respectively.
- Score: 0.6144680854063939
- License:
- Abstract: By employing the replica trick we study the impact of the replica parameter $n$ on the modular entropy and the capacity of entanglement in the End of the World (EoW) model and the island model, respectively. For the EoW model, we present $n$-dependent evolution curves of the modular entropy and the capacity of entanglement under both microcanonical and canonical ensembles. In particular, in the canonical ensemble, all quantities decrease as $n$ increases at late times. For the island model, we develop the replica geometry for finite $n$ and re-evaluate the modular entropy and the capacity of entanglement in a two-sided eternal Jackiw-Teitelboim black hole coupled with a thermal bath. In the case of a single island configuration, the modular entropy and capacity of entanglement closely resemble the thermal entropy and the heat capacity, respectively, yielding results analogous to those obtained in the canonical ensemble for the EoW model. The analysis of the results from these two models strongly indicates that in geometries with a greater number of $n$ copies, more connected geometries effectively purify thermal Hawking radiation. In addition, we compare these findings with statistical mechanics and provide an interpretation for the replica parameter $n$. Finally, we generalize the island formula to accommodate the finite $n$ case under this interpretation.
Related papers
- D-commuting SYK model: building quantum chaos from integrable blocks [7.876232078364128]
We study the spectrum of this model analytically in the double-scaled limit.
For finite $d$ copies, the spectrum is close to the regular SYK model in UV but has an exponential tail $eE/T_c$ in the IR.
We propose the existence of a new phase around $T_c$, and the dynamics should be very different in two phases.
arXiv Detail & Related papers (2024-11-19T19:00:06Z) - A New Genuine Multipartite Entanglement Measure: from Qubits to Multiboundary Wormholes [0.0]
We introduce the Latent Entropy (L-entropy) as a novel measure to characterize the genuine multipartite entanglement in quantum systems.
We demonstrate that the measure functions as a multipartite pure state entanglement monotone and briefly address its extension to mixed multipartite states.
In particular, we show that for $n geq 5$, random states approximate 2-uniform states with maximal multipartite entanglement.
arXiv Detail & Related papers (2024-11-18T19:00:03Z) - Krylov complexity in the IP matrix model [0.0]
The IP matrix model is a simple large $N$ quantum mechanical model made up of an adjoint harmonic oscillator plus a fundamental harmonic oscillator.
We study the Lanczos coefficients $b_n$ in this model and at sufficiently high temperature, it grows linearly in $n$ with logarithmic corrections.
As a result, the Krylov complexity grows exponentially in time as $sim expleft(calOleft(sqrttright)right.
arXiv Detail & Related papers (2023-06-07T21:58:09Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Modular Nuclearity and Entanglement Entropy [0.0]
In this work we show that the Longo's canonical entanglement entropy is finite in any local QFT verifying a modular $p$-nuclearity condition.
As application, in $1+1$-dimensional integrable models with factorizing S-matrices we study the behavior of the canonical entanglement entropy as the distance between two causally disjoint wedges diverges.
arXiv Detail & Related papers (2021-08-20T09:01:59Z) - Subsystem R\'enyi Entropy of Thermal Ensembles for SYK-like models [20.29920872216941]
The Sachdev-Ye-Kitaev model is an $N$-modes fermionic model with infinite range random interactions.
We study the thermal R'enyi entropy for a subsystem of the SYK model using the path-integral formalism in the large-$N$ limit.
arXiv Detail & Related papers (2020-03-21T23:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.