New insights on the quantum-classical division in light of Collapse
Models
- URL: http://arxiv.org/abs/2210.10603v3
- Date: Sun, 6 Aug 2023 04:33:28 GMT
- Title: New insights on the quantum-classical division in light of Collapse
Models
- Authors: Fernanda Torres, Sujoy K. Modak, Alfredo Aranda
- Abstract summary: We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
- Score: 63.942632088208505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue, in light of Collapse Model interpretation of quantum theory, that
the fundamental division between the quantum and classical behaviors is
analogous to the division of thermodynamic phases. A specific relationship
between the collapse parameter $(\lambda)$ and the collapse length scale
($r_C$) plays the role of the coexistence curve in usual thermodynamic phase
diagrams. We further claim that our functional relationship between $\lambda$
and $r_C$ is strongly supported by the existing IGEX collaboration data. This
result is preceded by a self-contained discussion of quantum measurement theory
and the Ghirardi-Rimini-Weber (GRW) model applied to the free wavepacket
dynamics.
Related papers
- Heisenberg dynamics of mixed quantum-classical systems [0.0]
Mixed quantum-classical systems involve the interplay of unitary operators acting on the quantum observables and the Lagrangian trajectories.
This interplay reflects an intricate structure which is made particularly challenging by the backreaction excerpted on the classical trajectories by the quantum degrees of freedom.
arXiv Detail & Related papers (2024-05-17T09:36:03Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - The classical two-dimensional Heisenberg model revisited: An
$SU(2)$-symmetric tensor network study [0.6299766708197883]
We make use of state-the-art tensor network approaches to explore the correlation structure for Gibbs states.
We find a rapidly diverging correlation length, whose behaviour is apparently compatible with two main contradictory hypotheses.
arXiv Detail & Related papers (2021-06-11T11:05:00Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Dissipative dynamics at first-order quantum transitions [0.0]
This issue is studied within the paradigmatic one-dimensional quantum Ising model.
We analyze the out-of-equilibrium dynamics arising from quenches of the Hamiltonian parameters.
We observe a regime where the system develops a nontrivial dynamic scaling behavior.
arXiv Detail & Related papers (2020-09-23T14:08:21Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.